SPINOR AS AN INVARIANT
 (spinon kax invariantini ob'mis)

PMM Vol.30, No 6, 1966, pp. 1087-1097
V.A. THELNOROVICH
(Moscow)
(Received November 10, 1965)

1. Representation of apinors in terme of tensor syatame. In quantum mechanics, some of the elementary particles can be described in terms of several wave functions, which represent a spinor in a three- or four-dimensional space. Spinors can also be used as generalized parameters in constructing the models of continuous media.

When we regard a spinor as a linear geometrical entity, then we can define it only on the orthogonal group of transformations of coordinates. Nevertheless, spinor equations can be written in an equivalent form which lends itself to investigation in arbitrary curvilinear coordinate systems.

1. Basic definitions. We shall first consider spinors in the four-dimensional Minkowski space R_{4}, referred to the original coordinate system x^{2}. Coordinate x^{4} shall be assumed to be complex. Let γ_{1}, γ_{2}, γ_{3} and γ_{4} be Dirac matrices which, by definition, satisfy

$$
\begin{equation*}
\Upsilon_{i} \tau_{j}+\gamma_{i} \Upsilon_{i}=2 \delta_{i j} J \tag{1.1}
\end{equation*}
$$

where δ_{1}, is Kronecker delta and J is a unit matrix.
If the system $\gamma_{1}(t=1,2,3,4)$ is a solution of (1.1), then we can easily see that the system $T_{Y_{1}} T^{1}$ will also be a solution of (1.1) for any nondegenerate matrix T_{1}. Any two solutions γ_{1} and γ_{1}^{c} are connected by the relation $\gamma_{1}{ }^{\circ}=T_{Y_{1}} T^{-i}$ where the matrix T_{i} is suitably defined [i].

We shall use the following set of Hermitian matrices γ_{1}

$$
\gamma_{1}=\left|\begin{array}{rrrr}
0 & 0 & 0 & -i \tag{1.2}\\
0 & 0 & -i & 0 \\
0 & i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\left\|, \quad \gamma_{2}=\left|\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right|, \quad \gamma_{3}=\left|\begin{array}{rrrr}
0 & 0 & i & 0 \\
0 & 0 & 0 & i \\
i & 0 & 0 & 0 \\
0 & -i & 0 & 0
\end{array}\right|, \quad \gamma_{4}=\left\lvert\, \begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right.\right\|\right.
$$

Let $L=\left\|\ell_{4} \triangleright\right\|$ be a Lorentz transformation of space R_{4}, and let a unimodular fourth-order matrix S defined by

$$
\Upsilon_{i}=l_{i}^{p} S \Upsilon_{\beta} s^{-1}
$$

correspond to each Lorentz transformation L.
Set of matrices S corresponding to the group of Lorentz transformations L; will also be a group, and will generate a innear representation of the group L, which shall be called a spinor representation. Finally, we shall call $\psi\left\{\psi^{2}\right\}$ whose components ψ^{1} are derined with accuracy of up to the change of sign and which transforms according to S, a spinor of first rank in the space R_{4}.

It can be shown that the group of spinor transformations S cannot be
considered as a subgroup of some group effecting the representation of a complete affine group of coordinate transformations (see Appendix). Obviously, if the system of matrices y_{i} is a solution of (1.1), then transposed matrices y_{i}^{*} also satisfy (1.1), consequently there exist a matrix C such, that

$$
\gamma_{i}^{*}=C \gamma_{i} C^{-1}, \quad \text { set } C=1
$$

Covariant components of the spinor ψ_{k} are given by

$$
\psi_{k}=e_{k i} \psi^{i} \quad\left(E=\left\|e_{k i}\right\|=C \gamma_{5}, \gamma_{5}=\gamma_{3} \gamma_{2} \gamma_{3} \gamma_{4}\right)
$$

2. Representation of spinors in terms of $c o m p l e x$ ten sors. We know [2] that the spinor ψ in the space R_{4} is equivalent to the tensor field Λ composed of a complex vector C_{1} and a complex antisymmetric tensor of second rank C_{p} which satisfy six independent algebraic equations. C_{1} and $C_{p q}$ are given by

$$
\begin{equation*}
C_{i}=\left(E \gamma_{i}\right)_{m n} \psi^{m} \psi^{n}, \quad C_{p q}=1 / s E\left(\gamma_{p} \gamma_{q}-\gamma_{q} \gamma_{p}\right)_{m n} \psi^{m} \psi^{n} \tag{1.3}
\end{equation*}
$$

For the matrices (1.2) we have

$$
E=\gamma_{4} \gamma_{2}=\left|\begin{array}{rrrr}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right|
$$

Components of $\boldsymbol{*}^{*}$ and the tensor field A are connected by Formula

$$
\begin{equation*}
\psi^{k}=\frac{\psi^{n \kappa}}{ \pm \sqrt{\psi^{n n}}} \tag{1.4}
\end{equation*}
$$

Here $\psi^{n}=\psi^{2} \psi^{\prime}$ denote the components of a spinor which is algebraically equivalent to Λ. Components $\phi^{\text {ar }}$ can be obtained in terms of the components of C_{1} and C_{D}, by means of Formulas (1.3).

Components of the tensors C_{1} and C_{p} satisfy the following invariant equations [3]:

$$
\begin{equation*}
C^{i} C_{i}=0, \quad C^{i k} C_{i k}=0, \quad C^{[i k} C^{p q]}=0, \quad C^{i} C_{i k}=0, \quad C^{i} C^{k}+C^{i p} C_{p}^{k}=0, \quad C^{[i} C^{p q]}=0 \tag{1.5}
\end{equation*}
$$

Here square brackets around the superscripts denote the alternation over these indices. Fifth equation of (1.5) defines, with accuracy of up to the change of sign, components of the vector C_{k} in terms of the components of C_{B}

$$
C_{k}=\frac{i C_{k n}^{C_{p}^{n}}}{ \pm \sqrt{C_{p n} C_{p}^{n}}}
$$

Out of all equations of $(1.5),(1.5 .2),(1.5 .3)$ and four equations out of (1.5.5) are independent.

By (1.4), every spinor equation has an equivalent expression in terms of the components of C_{1} and $C_{p q}$:
3. Representation of spinorsin inermes - f real ten sors components of the spinor f^{k} may form not only a complex field $A_{i}=\left\{C_{1}, C_{D_{2}}\right\}$, but also a real tensor field $\Omega=\left\{\Omega, j^{k}, M^{i k} S^{i j k}, N^{i k_{k}}\right\}$, satisfying nine independent algebraic equations. Components of the tensors $\Omega, j^{k}, M^{i k}, S^{i j k}$ and $N^{i k^{l}}$ can be defined [4] thus (*)
*) It can be shown that an orthogonal coordinate system exists, in which the components of tensors $C^{4}, C^{p q}, j^{p}, M^{p q}$ and $S_{k}=1 / 6 \varepsilon_{k j j l} S^{i / l}$ have the form (see Appendix)

$$
\begin{aligned}
& j^{k}=(0,0,0, i \rho) \\
& S^{k}=(0,0, i \rho, 0), \\
& C^{k}=(-i \rho, 0,0,0)
\end{aligned} \quad M^{i j}=\left|\begin{array}{cccc}
0 & -\Omega & 0 & 0 \\
\Omega & 0 & 0 & 0 \\
0 & 0 & 0 & N \\
0 & 0 & -N & 0
\end{array}\left\|, \quad C^{i j}=\right\| \begin{array}{cccc}
0 & 0 & N-i \Omega \\
0 & 0 & i N & \Omega \\
-N-i N & 0 & 0 \\
i \Omega- & \Omega & 0 & 0
\end{array}\right|
$$

$$
\begin{align*}
\Omega & =\gamma_{m n}{ }^{4} \psi^{m} \psi^{n}, \quad J_{p}=i\left(\gamma_{4} \gamma_{p}\right)_{m n} \bar{\psi}^{m} \psi^{n}, \quad M^{p q}=i\left(\Upsilon_{4} \gamma_{p} \Upsilon_{q}\right)_{m n} \psi^{m} \psi^{n} \tag{1.6}\\
S_{i j k} & =\left(\Upsilon_{4} \gamma_{i} \Upsilon_{j} \Upsilon_{k}\right)_{m n} \Psi^{m} \psi^{n}, \quad N_{i j k l}=\left(\gamma_{4} \Upsilon_{i} \Upsilon_{j} \Upsilon_{k} \gamma_{l}\right)_{m n} \bar{\psi}^{m} \psi^{n}, \quad i \neq i \neq k \neq l
\end{align*}
$$

Components of the tensors $\Omega, j^{p}, M^{i j}, S^{i j_{k}}$ and $N^{i j_{k} l}$ satisfy a number of invariant equations, the following of which are known [5, 6 and 7]:

$$
\begin{gather*}
J_{k}^{k} J_{k}=-\Omega^{2}+1 / 2 \Lambda N_{i j k l} N^{i j k l}, \quad 1_{6} S_{i j h} S^{i j k}=-\Omega^{2}+1 / A N_{i j k l} N^{i j k l} \\
\delta_{p q r n}^{i j k l} S_{i j k} I_{l}=0, \quad 1 / 2 M^{i j} M_{i j}=\Omega^{2}+1 / / 4 N_{i j k l} N^{i j k l} \\
\delta_{i j k l}^{p q r n} M^{i j} M^{k l}=8 \Omega N^{p q r n}, \quad M_{k p} i^{k}=1 / 6 N_{i j k p} S^{i j k} \\
S^{k l m} I_{k}=\Omega M^{l m}+1 / 2 N^{l m k r} M_{k r} \tag{1.7}
\end{gather*}
$$

It is also easy to obtain the following equations:

$$
\begin{align*}
& \delta_{i j k}^{p q r} M_{n}^{i} S^{n j k}=2 N^{p q r n} i_{n}, \quad M_{p q} S^{p q k}=-2 \Omega j^{k} \\
& 1 / S^{i p q} S_{p q j}^{i}=i^{i} j_{j}+M^{i k} M_{k j}+1 / 2 q N_{p q k!} N^{p q k l} g_{j}^{i} \\
& i_{n} S^{i j k}-1 / 6 \delta_{n p q r}^{l i j k} i_{l} S^{p q r}+M_{n p} N^{p i j k}=1 / 2 \delta_{n p q}^{i j k} \Omega M^{p q} \tag{1.8}
\end{align*}
$$

Tensor $\delta_{i j k}^{p a r}$ is defined as follows:

$$
\delta_{i j k}^{p q r}=\delta_{i}{ }^{p} \delta_{j}{ }^{q} \delta_{k}{ }^{r}-\delta_{i}{ }^{p} \delta_{j}^{r} \delta_{k}{ }^{q}+\delta_{i} \delta_{j}{ }^{r} \delta_{k}{ }^{p}-\delta_{i} \delta_{j}{ }^{r} \delta_{k}{ }^{p}+\delta_{i}{ }^{r} \delta_{j}{ }^{p} \delta_{k}{ }^{q}-\delta_{i}{ }^{r} \delta_{j}{ }^{q} \delta_{k}{ }^{p}
$$

and the tensor $\delta_{i j k i k}^{p q n}$ can be found in the analogous manner. We can also assume [8] that Equations (1.7.1),(1.73),(1.7.5) and (1.7.6) are Independent.

We know [2] that the tensor field Ω defines the components of the spinor ψ^{k} with accuracy of up to the factor whose modulus is unity. The connection between the components of the spinor and Ω is given by

$$
\begin{equation*}
\psi^{k}=\frac{\psi^{n^{*} k}}{ \pm \sqrt{\psi^{n^{n}}}} \exp (i \varphi) \tag{1.9}
\end{equation*}
$$

Here $\psi^{2 \cdot x}=\bar{j}^{-} \psi^{*}$ is algebraically equivalent to Ω.
Components of $\phi^{2} \cdot x$ can be found in terms of $\Omega, j^{p}, M^{i j}, S^{i j j_{k}}$ and $N^{i j_{k} l}$ from (1.6) and φ is an arbitrary real number.

Since the relationship (1,9) between the components of the spinor and a exists, arbitrary spinor equations can be written in an equivalent form in terms of components of Ω and of the phase Φ. Eliminating the phase φ from these equations we can obtain tensor equations in terms of the components of Ω. To complete the resulting set of tensor equations, nine independent algebraic equations (1.7) must or course be added.

Closed system of equations which we have obtained, will not be equivalent to the initial spinor equations. Nevertheless, this shortcoming is not important when it comes to consider physical aspects of the phenomena described by spinor equations, since only the tensors (1.6) have a direct physical meaning and all physical magnitudes (taking into account φ and the tensors $\Omega, j^{k}, M^{i j}$, $S^{i j k}$ and $N^{i j k^{l}}$ from the initial equations) can be expressed in terms of these tensors.

Tensors (1.3) and (1.6) are also algebraically interrelated and, in particular, the following relations exist:

$$
\begin{gather*}
4 \Omega^{2}=\bar{C}^{i} C_{i}-{ }^{1 / 2} C_{p q} \bar{C}^{p q}, \quad 4 \Omega j^{q}=i\left(C_{p} \bar{C}^{q p}-\bar{C}_{p} C^{q p}\right) \\
4 \Omega M^{p q}=i \delta_{i j}^{p q}\left(\bar{C}^{i} C^{j}-C_{r}^{i} \bar{C}^{r j}\right), \quad 8 \Omega S^{i j k}=\delta_{p q}^{i j k}\left(\bar{C}^{p} C^{q r}+C^{p} \bar{C}^{q r}\right) \\
16 \Omega N^{i j k l}=\delta_{p q r i}^{i j k l} \bar{C}^{p q} C^{r n}, \quad N_{i j k l} N^{i j k l}=-6\left(\bar{C}^{i} C_{i}+1 / 2 \bar{C}_{i j} C^{i j}\right) \tag{1.10}\\
4 j^{p} j^{q}=\bar{C}^{p} C^{q}+C^{p} \bar{C}^{q}-\bar{C}^{p k} C_{k}^{q}-C^{p h} \bar{C}_{k}^{q}-\left(\bar{C}^{i} C_{i}+1 / 2 \bar{C}^{i j} C_{i j}\right) g^{p q}
\end{gather*}
$$

$$
\begin{gathered}
S^{p} S^{q}+i^{p} i^{q}-g^{p q}\left(\Omega^{2}-1 / 24 N^{i j k} N_{i j k l}\right)=1 / 2\left(\bar{C}^{p} C^{q}+C^{p} \bar{C}^{q}\right) \\
j^{q} C_{p q}=i \Omega C_{p}, \quad S_{p q r} C^{r}=\Omega C_{p q}+1 / 2 N_{p q r n} C^{r n} \\
M^{k p} C_{k}=i \Omega C^{p}, \quad S^{i j k} C_{i j}=-2 \Omega C^{k} \\
C_{q} j_{p}=-i \Omega C_{p q}-M_{p k} C^{k}{ }_{q} \quad C_{q} l_{p}=i / 2 N_{k n q p} C^{k n}-M_{q k} C_{p}^{k}
\end{gathered}
$$

where $C^{p q}$ denotes complex conjugates of C° with the change of sign of the components C^{4}.

```
    4. Two-component spinors in the Minkow-
ski spacee. Spinorms inn the thoreemdimenn-
sionals space . We know [4] that the transformation matrix S
of the spinors corresponding to characteristic Lorentz transformation has, for the matrices \(Y_{1}\) given by Formula (1.2), the form
```

$$
S=\left\|\begin{array}{ll}
\Sigma & 0 \\
0 & \Sigma *-1
\end{array}\right\|
$$

Therefore, two component pairs $\left\{\psi^{2} \psi^{2}\right\}$ and $\left\{\psi^{3} \psi^{4}\right\}$ transform under the characteristic Lorentz group independently of each other. This fact allows us to consider, on the characteristic Lorentz group, not only four-component spinors, but also two-component spinors.

Everything that was derived above for the four-component spinors is true for the two-component spinors and corresponding formulas are obtained by putting $\psi^{3}=0$.

These additional conditions lead to considerable simplification of the relationship between spinors and tensors, as in this case components of the vector C^{1} are identically equal to zero, while the tensor $C^{\text {b }}$ assumes a special form (in the orthogonal coordinate system), namely

$$
C^{p q}=\left\|\begin{array}{cccc}
0 & -p_{z} & p_{y} & p_{x} \tag{1.11}\\
p_{z} & 0 & -p_{x} & p_{y} \\
-p_{y} & p_{x} & 0 & p_{z} \\
-p_{x} & -p_{y}-p_{z} & 0
\end{array}\right\|
$$

$$
p_{x}^{2}+p_{y}^{2}+p_{z}^{2}-0
$$

and satisfies an additional relation

$$
\begin{equation*}
C_{p q}=-1 / 2 \varepsilon_{p q i j} C^{i j} \tag{1.12}
\end{equation*}
$$

where $\epsilon_{g \& i j}$ is a unit, completely antisymmetric pseudo-tensor.
By (1.12) all the identities of (1.5) except (1.5.3) are satisfied. Therefore, two-component spinor in the Minkowski space is equivalent to the antisymmetric tensor $C^{\text {pq }}$ satisfying the identities (1.5.3) and (1.12). Ω in'this case consisits of an isotropic vector j^{k}. Equations (1.10) become

$$
j^{p} i_{p}=0, \quad j^{p} C_{p q}=0
$$

Under three-dimensional spatial transformations, components p_{x}, p_{y} and p_{z} become the components of the pseudo-vector. Spinors in three-dimensional space can be considered as a particular case of two-component spinors in the four-dimensional space, therefore it is clear that a spinor in three-dimensional space is equivalent to an isotropic complex pseudo-vector. Existence of two-component spinors in four-dimensional space is closely related to the existence of an invariant submanifold $\left\{0, C^{p q}\right\}$. This means that, when fundamental spin tensors y_{1} are chosen arbitrarily (and not only in the form of (1.2)), then a spinor space contains a two-dimensional subspace, which is Invariant relative to the characteristic Lorentz group.

In order to write spinor equations in tensor form, we can also use, apart from (1.4) and (1.9), the following relation between the spinor and the quantities ${ }^{p s}$ and p°

$$
\begin{equation*}
\psi^{k}=\frac{\psi^{n k}}{ \pm \sqrt{\bar{\psi}^{n n}}} \tag{1.13}
\end{equation*}
$$

With algebraic equations (1.10) taken into account, (1.13) allows us to obtain a closed system of tensor equations in terms of $C_{p}, C_{p q}, \Omega, P^{p}, M^{i j}, S^{i j k}$ and N. Equivalence of such a system of tensor equations to the initial system of spinor equations, follows from the previous argument.

Summing everything up, we can draw the following conclusions.

1. Four-component spinor in the Minkowski space is equivalent to the tensor field $\Lambda=\left\{C_{1}, C^{p q}\right\}$ which satisfies Equations (1.5).

Two-component spinor in the Minkowski space is equivalent to the antisymmetric tensor $C_{p q}$ satisfying Equations

$$
C^{[p q} C^{i j]}=0, \quad C_{p q}=-1 / 2 \varepsilon_{p q i j} C^{i j}
$$

A spinor in a three-dimensional space is equivalent to an isotropic complex pseudo-vector.
2. An equivalent form of any spinor equation can be written in terms of components of tensors C_{1} and $C_{p q}$.
3. Spinor equations can generate a closed system of equations in terms of components of tensors $\Omega, j^{p}, M^{i j}, S^{i j k}$ and $N^{i j} k^{l}$.
2. Tencor form of Dase equations. 1 . Dirac equations
 In the relativistic theory of electrons proposed by Dirac, equations which are established for four wave functions of the electron ${ }^{k}$, form a spinor of first rank in the Minkowski space. They can be written as

$$
\begin{equation*}
\Upsilon_{n m}^{k}\left(\frac{\partial \psi^{m}}{\partial x^{k}}+\frac{i e}{\hbar c} A_{k} \psi^{m}\right)+\frac{m c}{\hbar} \psi^{n}=0 \tag{2.1}
\end{equation*}
$$

where A_{k} is some vector potential of external electromagnetic fields, $x^{4}=$ tct, m and e are the mass and charge of the electron, γ^{k} are Dirac matrices, h is the Plank's constant and c° is the velocity of light in vacuo.

Summation from 1 to 4 is performed over the indices k and m. Inserting the identity $\psi^{m}=\psi^{n m} / \pm \sqrt{\psi^{n n}}$, into (2.1), we easily obtain

$$
\begin{equation*}
\boldsymbol{\tau}_{n m}^{k}\left(\frac{\partial \psi^{\nu m}}{\partial x^{k}}-\frac{1}{2} \frac{\psi^{\nu m}}{\psi^{\nu \nu}} \frac{\partial \psi^{\nu \nu}}{\partial x^{k}}\right)+\left(\frac{i e}{\hbar c} A_{k \uparrow n m}^{k} \psi^{\nu m}+\frac{m c}{\hbar} \psi^{\nu n}\right)=0 \tag{2.2}
\end{equation*}
$$

in which the summation over v is omitted. On contraction with $E_{m n} \psi^{m v}$ over n, the above equation gives

$$
\begin{equation*}
\left(\frac{\partial}{\partial x^{k}}+\frac{2 i e}{\hbar c} A_{k}\right) C^{k}=0 \tag{2.3}
\end{equation*}
$$

Contraction of (2.2) with the matrices $\left(E \gamma_{i}\right)_{m n} \psi^{m \nu}$ over n, or alternatively, over v with diagonal matrices $J, \gamma_{5}, \gamma_{3} \gamma_{4}$ and $\gamma_{1} \gamma_{2}$, yields

$$
\begin{array}{r}
2 C^{p q} \nabla_{n} C^{n k}+\delta_{r n}^{p q}\left(C^{r i} \nabla^{k} C_{i}^{n}+C^{r} \nabla^{k} C^{n}\right)+4 C^{p q}\left(\frac{i e}{\hbar c} A_{n} C^{n k}-\frac{m c}{\hbar} C^{k}\right)=0 \\
(p, q=2,4, p, q=1,4) \\
2 a^{p} \nabla_{n} C^{n k}+\left(C^{p i} \nabla^{k} C_{i}-C_{i} \nabla^{k} C^{p i}\right)+4 C^{p}\left(\frac{i e}{\hbar c} A_{n} C^{n k}-\frac{m c}{\hbar} C^{k}\right)=0 \quad(p=1,2) \tag{2.5}
\end{array}
$$

Obviously, these equations are valid for all sets of indices p and q, but they cease to be independent.

There are three independent equations with respect to k in (2.4) and (2.5).

Using the identities (1.5.1) and (1.5.2), we can reduce these equations to

$$
\begin{gather*}
C^{p q}\left(\nabla_{n} C^{n k}+\frac{2 i e}{\hbar c} A_{n} C^{n k}-\frac{2 m c}{\hbar} C^{k}\right)+C^{p n} \nabla^{k} C_{n}^{a}+C^{p} \nabla^{k} C^{q}=0 \tag{2.6}\\
C^{p}\left(\nabla_{n} C^{n k}+\frac{2 i e}{\hbar c} A_{n} C^{n k}-\frac{2 m c}{\hbar} C^{k}\right)+C^{p n} \nabla^{k} C_{n}=0 \tag{2.7}
\end{gather*}
$$

Equation (2.3) and any two equations from (2.7) with one equation from (2.6), or two equations from each (2.6) and (2.7) (in k), form a system of equations equivalent to the Dirac system, and Dirac equations in spinor form can be obtained from them by reversing the procedure used previously to obtain tensor equations. Equivalence of these equations can only be violated during the process of multiplying (2.1) by $\sqrt{\psi^{v N}}$ and during the contraction of (2.2).

It can however be verified, that in both cases this only leads to the loss of the null solution and both, Dirac equations and the set (2.3), (2.6) and (2.7) have a null solution.

Contracting Equations (2.2) with various matrices $\gamma^{1}, \gamma^{1} \gamma^{j}, \ldots$ over the indices n and v, we can obtain a number of other equations which follow from Dirac equations, but they w111 all be dependent on (2.6) and (2.7) and will not contribute anything towards the construction of a complete system of tensor equations.

Using the identity (1.13), we can write Dirac equations thus

$$
\begin{equation*}
\Upsilon_{n m}^{k}\left(\frac{\partial \psi^{v^{*} m}}{\partial x^{k}}-\frac{1}{2} \frac{\psi^{v^{*} m}}{\bar{\psi}^{v v}} \frac{\partial \bar{\psi}^{\nu v}}{\partial x^{k}}\right)+\left(\frac{i e}{\hbar c} A_{k} \Upsilon_{n m}^{k} \psi^{v^{*} m}+\frac{m c}{h} \psi^{v^{*} n}\right)=0 \tag{2.8}
\end{equation*}
$$

This, on contraction over n and v with various matrices v^{1}. yields equations in terms of components of tensors $C^{p}, C^{p q}, \Omega, l^{p}, \ldots, N^{i j k l}$. These equations are also equivalent to the Dirac system and, in particular, the following equations hold

$$
\begin{gather*}
\Omega\left(\frac{2 m c}{\hbar} i^{p}-\nabla_{k} M^{k p}\right)+i\left[1 / 4\left(\bar{C}_{i} \nabla^{p} C^{i}-1 / 2 \bar{C}_{i j} \nabla^{p} C^{i j}\right)-\Omega \nabla^{p} \Omega-\frac{2 e}{\hbar c} \Omega^{2} A^{p}=0\right. \\
C^{n}\left(\frac{2 m c}{\hbar} i^{p}-\nabla_{k} M^{k p}-\frac{2 e}{\hbar c} \Omega A^{p}\right)+i \nabla^{p}\left(\Omega C^{n}\right)-i / 2\left(C^{n} \nabla^{p} \Omega-\right. \\
\left.-i C_{k} \nabla^{p} M^{k n}-i C^{n k} \nabla^{p} i_{k}-1 / 2 C_{i j} \nabla^{p} S^{i j n}\right)=0 \tag{2.9}\\
\Omega\left(\nabla_{k} C^{k q}-\frac{2 m c}{\hbar} C^{q}+\frac{2 i e}{\hbar c} A_{k} C^{k q}\right)+i / 2\left[-i_{k} \nabla^{q} C^{k}-1 / 2 M_{k p} \nabla^{q} C^{k p}\right]=0
\end{gather*}
$$

2. Equations for the neutrino in ten $s \circ r \mathrm{f} \circ \mathrm{rm}$. Relativistic equation for neutrino in the form given by Pauli, Lee and Yang, is

$$
\sigma^{k} \frac{\partial}{\partial x^{k}} \psi=0
$$

where σ^{k} are two-row matrices satisfying the relation

$$
\bar{\sigma}^{p} \sigma^{q}+\sigma^{q} \quad \bar{\sigma}^{p}=2 g^{p q} J
$$

Pauli-Lee-Yang equations can be obtained from Dirac equations (2.1) by putting $m=0, \psi^{3}=\psi^{4}=0, A_{k}=0$. Taking into account (3) of Section 1 , we find from (2.6), that the tensor form of Pauli-Lee-Yang equations have the form

$$
\begin{equation*}
C^{p q} \nabla_{n} C^{n k}+C^{p n} \nabla^{k} C_{n}^{q}=0 \tag{2.10}
\end{equation*}
$$

Where $C^{p a}$ is an antisymmetric tensor satisfying the identities (1.5.3) and (1.12) and which contains two independent equations with respect to k (2.10).

From (2.9) we also obtain equations in terms of components of j^{k} and CD9; they are:

$$
\begin{equation*}
I^{r} \nabla_{k} C^{p k}-i^{k} \nabla^{p} C_{k}^{r}=0 \tag{2.11}
\end{equation*}
$$

 nents of tensors, $\Omega, j^{p} M^{p q}, S^{p q r}$ and $N^{p q r n}$. System of quasilinear equations (2.3), (2.6) and (2.7) is equivalent to Dirac equations and makes the investigation of problems of motion of an electron in gravitational fields possible. Tensors C_{1} and C_{p} entering these equations are, however, complex and have, apparentiy, no direct physical sense.

We have shown previously, that a closed system of equations in terms of tensors $\Omega, j^{p}, \ldots, N^{i j k l}$ can be obtained from spinor equations. When compared with complex equations, such a system offers the advantage, that the tensors entering it have a known physical meaning and that the number of undenowns is less by one (the phase φ).

In order to obtain Dirac equations in terms of tensors $\Omega, \ldots, N^{i j k^{l}}$, we shall insert the identity

$$
\psi^{m}=\frac{\psi^{v^{*} m}}{\sqrt{\psi^{v^{*} v}}} \exp \left(i \varphi_{\nu}\right)
$$

into them, obtaining

$$
\begin{equation*}
\gamma_{n m}^{k} \psi^{v^{*} m} \frac{\partial \varphi^{v}}{\partial x^{k}}=i\left[\gamma_{n m}^{k}\left(\frac{\partial \psi^{v^{*} m}}{\partial x^{k}}-\frac{1}{2} \frac{\psi^{v^{*} m}}{\psi^{v^{* v}}} \frac{\partial \psi^{v{ }^{*} v}}{\partial x^{k}}\right)+\left(\frac{i e}{\hbar c} \gamma_{n m}^{k} A_{k}+\frac{m c}{\hbar} \delta_{n m}\right) \psi^{v^{*} m}\right. \tag{2.12}
\end{equation*}
$$

which, in terms of φ_{ν} and $\psi^{*}{ }^{*}$ is eçuivalent to the Dirac system. Let us denote the right-hand side of (2.12) by $P^{\nu n}$. Then

$$
\begin{equation*}
\Upsilon_{n m}^{k} \psi^{v^{*} m} \frac{\partial \varphi_{\nu}}{\partial x_{k}}=P^{v n} \tag{2.13}
\end{equation*}
$$

from which we ootain the following imependent relationships for $\boldsymbol{p}^{v n}$:

$$
\begin{array}{cc}
\operatorname{Re}\left[\psi^{l v} \gamma_{l}^{4} n^{v n}\right]=0, & \operatorname{Re}\left[\psi^{l v}\left(\gamma^{2} \gamma^{2} \psi^{3}\right)_{l n} P^{v n}\right]=0 \\
\operatorname{Re}\left[\psi^{\lambda l}\left(\gamma^{3} \psi^{1}\right)_{l n} P^{v n}\right]=0 ; & \operatorname{Im}\left[\psi^{\lambda l}\left(\gamma^{2} \psi^{1}\right)_{l n} P^{v n}\right]=0 \tag{2.14}
\end{array}
$$

It can be shown that no other equations of the type of (2.14), 1.e. Inear combinations of $P^{v n}$ exist, which are equal to zero. Relations (2.14.1) and (2.14.2) can be transformed into

$$
\begin{equation*}
1 / 8 \delta_{k i j l}^{p q r n} \nabla^{k} S^{i j l}=\frac{2 m c}{\hbar} N^{p q r n}, \quad \nabla_{k} i^{k}=0 \tag{2.15}
\end{equation*}
$$

and (2.15.1) can be written as

$$
\nabla_{k} S^{k}=\frac{2 m c}{\hbar} N, \quad S^{k}=1 / 88^{k i j l} S_{i j l}, \quad N=1 / 24 e^{i j k l} N_{i j k l}
$$

Relations (2.14 .3) and (2.14.4) yleld the fact that the components \boldsymbol{F}^{314} and Φ^{234} of the tensor $\Phi^{04 F}$ are equal to zero

$$
\begin{align*}
\Phi^{p q r}= & j^{k} \nabla_{k} S^{p q r}+\frac{2 m c}{\hbar} N^{n p q r} j_{n}+1 / 8 \delta_{i j k l}^{n p q r}\left(S^{i j k} \nabla^{l} i_{n}-S^{i j k} \nabla_{n} j^{l}+i^{l} \nabla_{n} S^{i j k}\right)- \\
& -1 / 2 \delta_{k i j}^{p q r}\left(M^{i j} \nabla^{k} \Omega-\Omega \nabla^{k} M^{i j}\right)+N^{n p q r} \nabla_{k} M_{n}^{k}-M_{n}^{k} \nabla_{k} N^{n p q r} \tag{2.16}
\end{align*}
$$

and we can see that, in general, par $^{p}=0$ for any p, q and r.
To obtain the remaining differential equations we shall have to solve (2.13) with respect to $\partial \varphi_{v} / \partial x^{p}$

$$
\Omega \psi^{v^{*} \nu} \frac{\partial \varphi_{\nu}}{\partial x_{p}}=\operatorname{Re}\left[\psi^{e^{* v}}\left(\gamma^{4} \gamma^{p}\right)_{l n} p^{\nu n}\right], \quad \Omega \psi^{\nu^{*} v} \frac{\partial \varphi_{v}}{\partial x_{4}}=i \operatorname{Im}\left[\psi^{e^{0} v} J_{l n} p^{\nu n}\right]
$$

$$
\begin{equation*}
N \psi^{v^{*} v} \frac{\partial \varphi_{v}}{\partial x_{p}}=-i \operatorname{Im}\left[\psi^{e v}\left(\gamma^{5} \gamma^{4} \gamma^{v}\right)_{l n} p^{v n}\right], \quad N \psi^{v v} \frac{\partial \varphi_{v}}{\partial x_{4}}=-\operatorname{Re}\left[\psi^{e v} \Upsilon_{\ln }^{8} p^{v n}\right] \tag{2.17}
\end{equation*}
$$

Transforming the right-hand sides of these equations, we obtain

$$
\begin{gather*}
\psi^{v^{\cdot} v} \Omega \frac{\partial \varphi_{v}}{\partial x^{p}}=\frac{\psi^{v^{*} v}}{2}\left(\frac{\partial}{\partial x^{l}} M_{p}^{l}+\frac{2 m c}{\hbar} i_{p}-\frac{2 e}{\hbar c} \Omega A_{p}\right)+ \\
+\frac{i}{2} \gamma_{l m}^{4}\left(\psi^{e^{*} v} \frac{\partial}{\partial x^{p}} \psi^{v^{*} m}-\psi^{v^{*} m} \frac{\partial}{\partial x^{p}} \psi^{e^{*} v}\right) \tag{2.18}\\
\psi^{v^{*} v} N^{k p q r} \frac{\partial \varphi_{\nu}}{\partial x^{k}}=-\frac{\psi^{v^{* v}}}{2}\left(\frac{1}{2} \delta_{i j \hbar}^{p q r} \nabla^{i} M^{j k}+\frac{2 e}{\hbar c} N^{k p q r} A_{k}\right)- \\
-\frac{i}{2} e^{n p q r}\left(\gamma^{5} \gamma^{4}\right)_{l m}\left(\psi^{e^{*} v} \frac{\partial}{\partial x^{n}} \psi^{v^{*} m}-\psi^{v^{*} m} \frac{\partial}{\partial x^{n}} \psi^{e^{*} \nu}\right)
\end{gather*}
$$

Conditions of compatibility of these systems which we shall consider as algebraic equations in $\partial \varphi, / \partial x^{p}$, give

$$
\begin{equation*}
N^{k p q r}\left(\nabla_{l} M_{k}^{l}+\frac{2 m c}{\hbar} j_{k}\right)+\frac{1}{2} \Omega \delta_{i j k}^{p q r} \nabla^{i} M^{j k}+1 / 6 \delta_{i j l k}^{\eta p q r}{ }^{k} \nabla_{n} S^{i j l}=0 \tag{2.19}
\end{equation*}
$$

Approximate equation analogous to (2.19) was obtained by De Broglie [9] under the assumption of the absence of external fields and of small velocity of the electron.

Last identity of (1.8) implies that (2.19) and Equation qur $^{2 r}=0$, are interdependent.

To complete the tensor equations in terms of components of Ω we can use the equations of simultaneity of the system (2.17) considered as differential equations in $\partial \varphi_{v} / \partial x^{p}$, i.e. Equations

$$
\frac{\partial}{\partial x^{i}} \frac{\partial}{\partial x^{k}} \varphi_{v}-\frac{\partial}{\partial x^{k}} \frac{\partial}{\partial x^{i}} \varphi_{v}=0
$$

Energy - impulse tensor is however found to be more sultable for our purpose.
4. Energy-1mpulse tensory inthedirac $t h e \dot{o} y$ We know [4] that the energy - impulse tensor T_{j} can, in the Dirac theory, be written as

$$
\begin{equation*}
T_{p}^{q}=\frac{n c}{2}\left(\gamma^{4} \gamma^{q}\right)_{m n}\left(\bar{\psi}^{m} \frac{\partial \psi^{n}}{\partial x^{p}}-\psi^{n} \frac{\partial \bar{\psi}^{m}}{\partial x^{p}}\right)+\frac{e}{c} A_{p} I^{q} \tag{2.20}
\end{equation*}
$$

and the tensor thus defined, satisfies [4] Equations

$$
\begin{equation*}
\nabla_{i} T^{k i}=-e j_{i} H^{k i}, \quad T^{i k}-T^{k i}=\frac{\hbar c}{2} \nabla_{p} S^{i k p} \tag{2.21}
\end{equation*}
$$

It can easily be shown that the following identity exists:

$$
\begin{equation*}
\psi^{v^{\bullet \theta}}\left(\bar{\psi}^{\beta} d \psi^{\rho}-\psi^{\rho} d \bar{\psi}^{\beta}\right) \equiv \bar{\psi}^{\nu \beta} d \psi^{\theta \rho}-\psi^{v^{\circ} \rho} d \psi^{\beta \theta} \tag{2.22}
\end{equation*}
$$

which ylelds

$$
\psi^{v^{-\theta}} T_{\mathbf{p}}^{q}=\frac{\hbar c}{2}\left(\gamma^{4} \gamma^{q}\right)_{m n}\left(\bar{\psi}^{\nu m} \frac{\partial}{\partial x^{p}} \psi^{\theta n}-\psi^{\nu n} \frac{\partial}{\partial x^{p}} \psi^{m^{*} \theta}\right)+\frac{e}{c} A_{p} i^{q} \psi^{v^{* \theta}}
$$

The latter, on contraction with the matrices γ^{4} and $\gamma^{4} \gamma^{n}$ and with (1.10) taken into account, gives

$$
\begin{align*}
& T_{p}{ }^{q}=\frac{\hbar c}{4 \Omega}\left[\frac{1}{2}\left(c^{k} \nabla_{p} c_{k}^{q}-\bar{c}_{k}^{q} \nabla_{p} c^{k}\right)+i \nabla_{p}\left(\Omega j^{q}\right)-i^{k} \nabla_{p} M_{k}^{q}-\frac{1}{6} N^{q i j k} \nabla_{p} S_{i j k}\right]+e A_{p} I^{q} \\
& i^{n} T_{p}^{q}=\frac{\hbar c}{4}\left\{\frac { i } { 2 } \left[\left(\bar{c}_{i} \nabla_{p} c^{i}+\frac{1}{2} \bar{c}_{i j} \nabla_{p} c^{i j}\right) g^{q n}-\left(\bar{c}^{n} \nabla_{p} c^{q}-\bar{c}^{q} \nabla_{p} c^{n}\right)+\left(\overline{c^{n k}} \nabla_{p} c_{k}^{q}+\right.\right.\right. \\
+ & \left.\left.\left.c^{q k} \nabla_{p} c_{k}^{n}\right\rangle\right]+M^{q n} \nabla_{p} \Omega+\frac{1}{2} M_{k l} \nabla_{p} N^{k l q n}-S^{k q n} \nabla_{p} i k+i \nabla_{p}\left(j^{q} i^{n}\right)\right\}+e A_{p} i^{q} i^{n} \tag{2.23}
\end{align*}
$$

Obviously Formula

$$
\begin{equation*}
i^{n} T_{p}^{q}=\frac{\hbar c}{4}\left\{\frac{i}{2}\left(c^{n k} \nabla_{p} c_{k}^{q}+c^{q k} \nabla_{p} c_{k}^{n}\right)+i \nabla_{p}\left(i^{q} l^{n}\right)+i e^{r k q n} l_{r} \nabla_{p l k}\right. \tag{2.24}
\end{equation*}
$$

is valid for the energy - impulse tensor in case of the neutrino.
Utilizing Equation $f f_{p}=0$, we obtain from (2.24)

$$
\begin{equation*}
i_{n} T p^{n}=0 \tag{2.25}
\end{equation*}
$$

Considering the identity (2.25) as a system of equations in j_{m} we find, that by virtue of existence of a nonnull solution of j_{s}, the identity

$$
\begin{equation*}
\operatorname{det} T_{p} q=0 \tag{2.26}
\end{equation*}
$$

should hold.
From (2.25) we can obtain a solution $f_{n}=\zeta P_{n}$, where ζ is an arbitrary
function, and P_{a} is a third order minor of the matrix T_{0} a obtained from it by striking out the nth row and any column. By the isotropy of the vector f_{n}, the following identity should be fulfilled

$$
\begin{equation*}
p^{n} P_{n}=0 \tag{2.27}
\end{equation*}
$$

The Lagrangian in tensor form can be obtained from (2.23) since, as we know, the Lagrangian L is given in terms of the energy - impulse tensor by

$$
\begin{equation*}
L=T_{p}^{p}+m c^{2} \Omega \tag{2.28}
\end{equation*}
$$

Let us now obtain the expression for the components of f_{s} in terms of components of real tensors $\Omega, j^{p}, M^{i j}, S^{i j k}$ and $N^{i j k l}$. Putting

$$
\psi^{m}=\frac{\psi^{v^{*} m}}{\sqrt{\psi^{v^{* v}}}} \exp \left(i \varphi_{v}\right)
$$

into (2.20), we obtain T_{5} in the following form

$$
\begin{equation*}
\frac{1}{c} T_{p}^{q}=\frac{\hbar}{2}\left(\gamma^{4} \gamma^{q}\right)_{m n}\left[\frac{1}{\psi^{v^{*}}}\left(\psi^{m^{*} v} \frac{\partial \psi^{v m^{*}}}{\partial x^{p}}-\psi^{v} n \frac{\partial \psi^{m^{*} v}}{\partial x^{p}}\right)+2 i \psi^{m^{*} n} \frac{\partial \varphi_{\nu}}{\partial x^{p}}\right]+\frac{e}{c} A_{p} j^{q} \tag{2.29}
\end{equation*}
$$

which, on multiplying by $\psi^{\nu \nu \nu}$ and subsequent contraction with γ^{*} over v, becomes

$$
\begin{gather*}
1 / c \Omega T_{p}^{q}=1 / 4 \hbar\left[j_{i} \nabla_{p} M^{q l}-M^{q l} \nabla_{p} i_{l}-1 / 6 N^{q i j k} \nabla_{p} S_{i j k}+\right. \\
\left.+1 / 6 S_{i j k} \nabla_{p} N^{q i j k}\right]-m c i_{p} l^{q}+\hbar / 2 j^{q} \nabla_{l} M_{p}^{l} \tag{2.30}
\end{gather*}
$$

Use of the last identity of (1.7) leads to the final form

$$
\begin{equation*}
T_{p}{ }^{q}=\frac{m c^{2}}{\Omega} i_{p} l^{q}+\frac{\hbar c}{2 \Omega}\left[j_{l} \nabla_{p} M^{q l}+i^{q} \nabla_{l} M_{p}^{l}-\frac{1}{6} N^{q i j k} \nabla_{p} S_{i j k}\right] \tag{2.31}
\end{equation*}
$$

and calculation of the trace of the energy - impulse tensor, yields

$$
T_{p}^{p}=m c^{2}\left(\frac{j^{p} l_{p}}{\Omega}-\frac{1}{24} \frac{N^{i j h l_{i j h l}}}{\Omega}\right)=-m c^{2} \Omega
$$

where we have used the identity (1.7.1),
We know, that in quantum mechanics the magnitude $m \Omega$ denotes the actual mass of an electron, hence T, represents the actual energy of an electron. We notice that the form in which the tensor is given in (2.23) differs radically from that in (2.31). This is explained by the fact, that in the derivation of (2.31) fulfilment of Dirac equations was assumed, therefore the Lagrangian L formed according to Formula $L=T^{p}+m c^{2} \Omega$ becomes identically zero, while equating to zero of the Lagrangian obtained from the tensor $T_{p}{ }^{q}$ in the form given in (2.23), leads to another tensor equation.

This makes it clear that the three equations (2,20.1) in which the components of $T_{p}{ }^{q}$ are given in terms of components of $\Omega, p^{p}, \ldots, N^{i j} k^{l}$ according to Formula (2.31) form, together with equations of (2.19), a complete system of differential equations, which can be closed by addition of nine independent algebraic equations (1.7). Another complete system can be formed from Equations (2.15), two equations of (2.19) and three equations of (2.21.1) or equations of simultaneity of the system (2.17), are second order differential equations.

The fact that three second order equations are necessary arises not from the pecullarity of our method, but from the invariance of the gradients of Dirac equations.

Indeed, a system of differential equations in tenoor form chould also be invariant under the gradient operation, and the fact that tensors entering these equations are invariant under gradient transformations implies, that tensor equations should contain not the potentials of external fields A_{k}, but the flelds themselves $\nabla_{p} A_{k}-\nabla_{k} A_{p}$.

Since potentials A_{k} enter Dirac equations without their derivatives, hence tensor equations containing the fields should be of second order, when the terms $\partial \psi^{*} / \partial x^{\mathbf{x}}$ are present in them. As there are three independent
components of A_{k}, we can have three such equations.
Using the methods given above, we can easily write also nonlinear equations which would be a generalization of Dirac theory in tensor form. Such equations in most cases have the form [10]

$$
\gamma^{k} \partial_{i} \psi+J \psi=0
$$

and they can be obtained in tensor notation by substituting J for mc / h in the Dirac equations in tensor form.

Appondix

A.1. Extension of spinor representation over the complete affinegroup. Let us consider a k-parameteric group G of transformations of coordinates of the n-dimensional Euclidean space R_{n}.

We shall choose the parameters $\alpha^{1}, \alpha^{2}, \ldots, \alpha^{k}$ defining the elements of the group in such a manner, that their null values define the unit element of G, and we shall consider the matrix representation of the group G in the p-dimensional space L_{p}.

We know that representation of such groups can be described in terms of
 the matrix of representation with respect to parameters of G, taken at null values of these parameters. Infinitesimal operators which appear as p-dimensional matrices, are given by

$$
\begin{equation*}
I_{j} I_{m}-I_{m} I_{j}=c_{j m}^{i} I_{i} \tag{A.1.1}
\end{equation*}
$$

Summation is performed from l to k, over t. Coefficients $c^{1}{ }^{1}$, are defined by the structure of G, according to well-known formulas [11].

Let us replace the parameters $\alpha^{1}, \alpha^{2}, \ldots, \alpha^{k}$ with $\theta^{1}, \theta^{2}, \ldots, \theta^{2}$ defining some subgroup A of G in such a manner that $\alpha^{1}=\alpha^{1}\left(\theta^{2}, \theta^{2}, \ldots, \theta^{r}\right)$ and $\alpha^{1}(0,0, \ldots, 0)=0$.

Some subgroup in T will correspond to $\Lambda \subset G$. It can easily be shown that the infinitesimal operators $I_{z^{\prime}}^{\prime}$ of the representation of Λ can be defined in terms of I_{n} as follows

$$
\begin{equation*}
I_{m}^{\prime}=I_{k}\left(\frac{\partial \alpha^{k}}{\partial \theta^{m}}\right)_{\theta^{\mathbf{t}}=\theta^{2}=\cdots=\theta^{r}=0} \tag{A.1.2}
\end{equation*}
$$

Let the following representation of the matrix group be given

$$
\left\|\begin{array}{cc}
1+\alpha^{1} & \alpha^{2} \\
\alpha^{3} & 1+\alpha^{4}
\end{array}\right\|
$$

where $\alpha^{1}, \alpha^{2}, \alpha^{3}$ and α^{4} are arbitrary parameters. Computation of the coefficients 0^{\prime} reaulto in this casc in the following set of relationships for infinitesimal operators

$$
\begin{array}{rlr}
I_{1} I_{2}-I_{2} I_{1}=I_{2}, & I_{2} I_{3}-I_{3} I_{2}=I_{1}-I_{4}, & I_{1} I_{3}-I_{3} I_{1}=-I_{3} \tag{A.1.3}\\
I_{2} I_{4}-I_{4} I_{2}=I_{2}, & I_{1} I_{4}-I_{4} I_{1}=0, & I_{3} I_{4}-I_{4} I_{3}=-I_{3}
\end{array}
$$

We shall attempt to define the representation T of the group G, which would coincide, on the orthogonal subgroup $0 \subset G$, with the spinor representation of the subgroup 0 with its infinitesimal operator K known.

To effect the transition from G to 0 , we must put

$$
\boldsymbol{a}^{1}=\cos \theta-1, \quad \boldsymbol{a}^{2}=-\sin \theta, \quad \boldsymbol{a}^{3}=\sin \theta, \quad \alpha^{4}=\cos \theta-1
$$

Then, from (A.1.2) it follows that:

$$
\begin{equation*}
K=I_{2}-I_{3} \tag{A.1.4}
\end{equation*}
$$

Since the spinor representation of weight $\frac{1}{2}$ is given by the matrices

$$
\left\{\begin{array}{cc}
\exp (1 / 2 i \theta) & 0 \\
0 & \exp (-1 / 2 i 0)
\end{array}\right.
$$

the operator K has the form

$$
K=\left\|\begin{array}{cc}
1 / 2 i & 0 \\
0 & -1 / 2 i
\end{array}\right\|
$$

and the system (A.1.3) with the condition (A.1.4) can, after eliminatine the dependent equations, be written as

$$
\begin{equation*}
I_{1} I_{3}-I_{3} I_{1}=-I_{3}, I_{3} K-K I_{3}=\lambda J-2 I_{1}, I_{1} K-K I_{1}=2 I_{3}+K \tag{A.1.5}
\end{equation*}
$$

where λ is arbitrary.
It is easy to show that the system (A.1.5) is not consistent at all possible values of λ. Consequently, we find that representation of a complete group of coordinate transformations coinciding with a spinor representation on the orthogonal subgroup, does not exist. This was proved for the spinor representation of a group of rotations of a plane, but it is obviously valid for spinor representations in space of any dimension. Hence it follows that the spinor considered as a linear geometrical entity, can be introduced only into orthogonal coordinate systems. Using this method we can also show that even an increase in the number of components of the spinor doos not result in the possibility of its introduction into nonorthoconal coordinate systems.
A.2. Tensors $\quad C_{i}, C_{p q}, p^{p}, M^{i j}$ and $S^{i j k} 1 \mathrm{n}$ canonic $\mathrm{f} \circ \mathrm{rm}$. Let us consider tensor aggregates $\left\{j^{p}, M^{i j}, S^{i j k}\right\}$ and $\left\{C_{i}, C_{p q}\right\}$.

We can always select such an orthogonal coordinate system, in which the components of j^{p} have the form

$$
\begin{equation*}
p^{p}=(0,0,0, i \rho) \tag{1.2.1}
\end{equation*}
$$

where we have, by virtue of (1.7.1), $\dot{\rho}^{2}=\Omega^{2}-N^{2}$. From (1.7.3) it follows that in this coordinate system the components S of the vector S^{0} becomes equal to zero:

Further, we shall perform an orthogonal transformation of the spatial coordinates x^{1}, x^{2} and x^{3} so, as to make the components of S^{1} and S^{0} equal to zero. Then, the components (A.2.1) will. remain the same, while the components of the vector $S^{\text {p }}$ will, by (1.7.2), be written as

$$
\begin{equation*}
S^{p}=(0,0, i \rho, 0) \tag{A.2.2}
\end{equation*}
$$

From (1.7) and (1.10) it follows, that in the coordinate system just obtained, components of the tensor $M^{1 〕}$ will be given by

$$
M^{i j}=\left\lvert\, \begin{array}{cccc}
0 & -\Omega & 0 & 0 \tag{A.2.3}\\
\Omega & 0 & 0 & 0 \\
0 & 0 & 0 & N \\
0 & 0 & -N & 0
\end{array}\right. \|
$$

From the identity (1.9) we find, that in this coordinate system components of the spinor $\psi^{\prime \prime}$ are given as

$$
\psi^{1}=\psi^{3}=0, \quad \psi^{2}= \pm \sqrt{1 / 2 \rho} e^{i \varphi}, \quad \psi^{4}=\frac{1 / 2(\Omega+N)}{ \pm \sqrt{1 / 2 \rho}} e^{i \varphi}
$$

and remembering that $\bmod \frac{\Omega+N}{\rho}=1$, we can put

$$
\begin{equation*}
\frac{\Omega+N}{\rho} e^{2 i \varphi}=e^{1 / 2 i \theta} \tag{A.2.1}
\end{equation*}
$$

On rotation of the plane $x^{2} x^{2}$ by an angle A, matrix of transformation of spinors becomes

$$
S=\left\|\begin{array}{cccc}
\exp (-1 / 2 i \theta) & 0 & 0 & 0 \\
0 & \exp (1 / 2 i \theta) & 0 & 0 \\
0 & 0 & \exp (-1 / 2 i \theta) & 0 \\
0 & 0 & 0 & \exp (1 / 2 i \theta)
\end{array}\right\|
$$

Let ue now rotate the $x^{2} x^{2}$ plane by an angle (-A). Then, by (1.3) which derine the components of C_{1} and C_{p} in terms of components of It follows, that in the obtained coordinate system, components of C_{s} and C_{p} are riven in the form

$$
C_{i}=(-i \rho, p, 0,0), \quad C_{p q}=\left|\begin{array}{cccc}
0 & 0 & N & -i \Omega \\
0 & 0 & i N & \Omega \\
-N & -i N & 0 & 0 \\
i \Omega & -\Omega & 0 & 0
\end{array}\right|
$$

while the components (A.2.1) to (A.2.3) remain unchanged.
The author expresees his eratitude to L.I. Sedov for valuable remarks and asoussment of this paper.

BIBLIOGRAPHY

1. Shveber, S., Vvedenie v reliativistskuiu kvantovuiu teoriiu polia (Introduction into the Relativistic Quantum Field Theory). Izd. inostr.L1ter., 1963.
2. Zhelnorovich, V.A., Predctavienie spinorov v n-mernom prostranstve sistemami tenzorov (Representation of spinors in n-dimensional space by tensor systems). Dokl.Akad. Nauk SSSR, Vol.169, № 2, 1966.
3. Klauder, I., Linear representation of spinor fields by antisymmetric tensors. J.math Phys., Vol.5, № 9, 1964.
4. Darwin, C.G., on the magnetic moment of the electron. Proc.Roy.Soc., Vol.120, № 621, 1928.
5. Fock, V., Geometrisierung der Diracschen Theorie des Electrons. Zs.f. Phys., Bd.57, 1929.
6. Uhlenbeck, G.E. and Laporte, O., Application of spinor analysis to the Maxweil and Dirac equation. Phys.Rev., Vol.37, p.1380, 1931.
7. Pauli, V., Obshchie printsipy volnovoi mekhaniki (General Principles of Wave Mechanics). M.-L., Gostekhizdat, 1947.
8. Halbwachs, F., Théorie relativiste aes rluides a spin. Paris, GautierVillars, 1960.
9. Louis de Broglie, Magnitnyi electron (Magnetic Electron). GNTIU, 1936.
10. Nelineinaia kvantovaia teorila polia (Nonlinear Quantum Field Theory). Izd.1nostr.Lit., 1959.
11. Liubarskii, G.Ia., Teorlia grupp 1 ee primenenie v fizike (Group Theory and its Applications in Physics). M., Fizmatgiz, 1958.
