SPINOR AS AN INVARIANT
(SPINOR KAX INVARIANTNYI OB'EKT)

PMM Vol1.30, W 6, 1966, pp. 1087~1097

V.A.ZHELNOROVICH
(Moscow)

(Received November 10, 1965)

1. Representation of apinors in terms of tensor systems. In quantum
mechanics, some of the elementary particles can be described in terms of
several wave functlons, which represent a spinor in a three- or four-dimen-~
sional space. Spinors can also be used as generalized parameters in construc-
ting the models of contlnuous media.

When we regard 2 spinor as a linear geometrical entlity, then we can define
it only on the orthogonal group of transformations of coordinates. Neverthe-
less, spinor equations can be written in an eguivalent form which lends
itself to investigatlion in arbltrary curvilinear coordinate systems.

1. Basic definitions . We shall first conslder spinors
in the four-dimenslonal Minkowski space A, , referred to the original coor-
dinate system x*. Coordlnate z* shall be assumed to be complex. Let vy,,
Yz, va and vys; be Dirac matrices which, by definition, satisfy

Y5 + 151 = 2‘3.;5] (1.1
where &6, 1s Kronecker delta and J 1s a unit matrix.

If the system vy, (1 = 1, 2, 3, 4) 18 & solution of (1.1), then we can
easily see that the system Ty,7 ! will also be a sclution >f (1.1) for any

nondegenerate matrix T . Any two solutions v, and vy, are connected by
the relation v,%= Ty,7T "} where the matrix 7 1is suitably defined [1].
We shall use the following set of Hermitlan matrices vy, (1.2
6 0 0-—i ¢ 0 01 0 0-—i O 6010
0 0—i O 0 0—1 0 0 0 0 0001
=10 i 0 ofr T=jo—1 o o) T=li 0o oofr MTlMM o000
fi 00 0 1 0 0 0 0—i 0 0 0100
Let L = |[£,7]| be a Lorentz transformation of space R., and let a unimod-
ular fourth- rder matrix § defined by

7= 17Sy s
correspond to each Lorentz transformation L .
Set of matrices & corresponding to the group of Lorentz transformations
L , will also be a2 group, and will generate a linear representation of the
group L , which shall be called a spinor representation. Finally, we shall

call ¥ = {§'} whose components ¢! are defined with accuracy of up to the

change of sign and which transforms according to § , a spinor of first rank
in the space R, .

It can be shown that the group of spinor transformations § cannot be
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considered as a subgroup of some group effecting the representation of a
complete affine group of coordinate transformations (see Appendix). Obviously,
if the system of matrices vy, is a solution of (1.1}, then transposed matri-
ces y® also satisfy {1.1), consequently there exist a matrix ( such, that

'Yi* = Cin’“’, det C =1
Covarlant components of the spinor ¢, are given by
i = et (E = {eril = C¥s, Vs = Yr¥aVsV)

2. Representation o f spinors in terms
o f complex tensors . We know [2] that the spinor ¢ in
the space R, 1is equivalent to the tensor fleld A composed of a complex
vector (¢, and a complex antisymmetric tensor of second rank (,, which
satisfy slx Independent algebralc equations. ¢, and (,, are given by

C;y = (BT} )y ¥™9", Cpo = E (10 — T B 0" (1.3)

For the matrices {1.2) we have

10 -1 0 0y
1 0 0 0
E=mmn=|o o o 1
0 0-—1t 0
Components of ¢* and the tensor field A are connected by Formula
K
k% ,
VoYY -4

Here y**= y2y* denote the components of a spinor which 1s algebraically
equivalent to A . Components ¢°* can be obtained in terms of the compo-
nents of (, and (,, by means of Formulas (1.3).

Components of the tensors (, and (,, satisfy the following invariant
equations [3]:

; ik m ikpal i _ ik ip B __ lippal ..

Cic, =0, C*Cy=0, CFCPU=0, C'Cy=0, C'C"+ CPC1 =0, C°C 0
(1.5)

Here square brackets around the superscripts denote the alternation over

these indices. Fifth equation of (1.5) defines, with accuracy of up to the
change of sign, components of the vector (, in terms of the components of

¢
re iCenC,"
-V pnC p

Out of all equations of (1.5),(1.5.2),(1.5.3) and four equations out of
(1.5.5) are independent.

By (1.4), every spinor equation has an equivalent expression in terms of
the components of ¢, and (. -

3. Representatilion of spinors in terms
of real tensors . Components of the spinor ¥* may form not
only a complex field A = {C,, (;,}, but also a real tensor fleld
Q = (Q, jk, M* s¥k Niikly satisfying nine independent algebralc equations.
Components’ of the tensors’ ' Q,jk, M*, SV and Nikl can be defined [4] thus (*)

#} It can be shown that an orthogonal coordinate system exists, in which the
components of tensors (i (P4, ;P MP? &nd S, = 1/se;;;SY' have the form (see
Appendix)

o ' 0_a 0 0 D0 N—iQ
/= (00,0, ip) b @ 00 o)y v 0V @
s¥ = (0, 0, ig, 0), M7=l o ol S —N—iNv 0 O

CF =(—ip,0,0,0) o 0o—~N o | oe— 9o o o
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Q=T ¥ P T =T ) O MY = (1Y ¥
~m . n

Siie = TN mn O 9 N = AT I O 9 iF=i k1

Components of the tensors , P, M, §iik and NUk! satisfy a number of
invarlant equatilons, the following of which are known [5, 6 and 7]:

(1.6)

N .. PPN i1kt
TS = — Q2 YaaN NI, 1S ST = 2 Y ANV
iy , i , ikl
‘SiféfinSukfz =0, oMM = O+l NV
T g iik
SRR MM = BQNPI™, My ¥ = 1N g ST

SKmj . QMI™ Ly NI (1.7)

It 1s alsoc easy to obtain the following equations:

5€?£Min5mk =2NPT,, M pqsmk = —20*

. s ik "
2SS pgj = 1yt MMy -+l g NP
I.nsuk — llsﬁﬁ,;’;‘, l.lqur + anank == 1/25;‘;1; QMP (1.8)

Tensor 5%3: is defined as follows:

per _ s P dg T PeTe q Ja P Qs rs P re Pg ¢ rs ds P
6ijk—- ; 05 &, —8; 6,8, + 6,956, — 9§ 65 8 +8,8; 8, —8&; 6’~ 8,
and the tensor 5ﬁ%n can be found in the analogous manner. We can also
assume [8) that Equations (1.7.1),(1.73),(1.7.5% and (1.7.6) are independent.

We know [ 2] that the tensor field Q defines the components of the spinor
¥* with accuracy of up to the factor whose modulus 1s unity. The connection
between the components of the spinor and O 1s gilven by

“pk . ,‘pﬂ'}f .
= + VW exp {ig) 1.9

Here ¢*+*= y°¢* is algebralcally equivalent to 0 .

Components of ¢®** can be found in terms of &, j?, M¥, S¥k and NUK from
{(1.6) and ¢ 1s an arbitrary real number.

Since the relationship (1.9) between the components of the spinor and
exists, arbitrary spinor equations can be written in an equlvalent form in
terms of components of 0 and of the phase ¢ . Eliminating the phase o
from these equations we can obtaln tensor equations in terms of the compo-
nents of Q . To complete the resulting set of tensor equations, nine 1lnde~
pendent algebraic equations (1.7) must of course be added.

Closed system of equations which we have obtained, will not be equivalent
to the initial spinor eguations. NeVertheless, this shortcoming 1s not
important when it comes to consider physical aspects of the phenomena des-
eribed by spinor equations, since only the tensors {1.6) have a direct physi-
cal meaning and all physical magnltudes (taking into account ¢ and the
tensors Q,jk, Mi, §ik and Niikl  from the initial equations) can be expres-
sed in terms of these tensors.

Tensors (1.3) and (1.6) are also algebrailcally interrelated and, in par-
ticular, the following relations exist:

402 =C'0; — 10, C™, 40" =i(C, 0 — C C"™)
4QMPL = ibPY(C'C7 —CiC™),  8QSUt = §Lik(CPCT + CPC)
16QN R = §L ik GPag™, N NUR = 6(CC; 4 11aC 0Y) (1.10)
4P 2= CPCT 4 CPCT— CPRC 1 — CPRC, 1 —(CPC; -+ 1/25“:7'0“.) gPd
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SPST 4o P4 4 gPY(Q2 lfﬂNU“Nijkl) = 1/, (CPCT .1 CPCY)

'(1 o T —
JIC g = 20 8 payCT == QC 0 -+ 1N o CT"

p!
M¥PC, = iQCP, SUkC, = — 200"
;i e | — N v P OAT 'kn___ K
Colp=—10C,, — M Ck Colp=il2N g C*" — M CF

where {®3 denotes complex conjugates of (7% with the change of sign of the
components (%%

4, Two-component splnors in the Minkow-
s k 1 space . Spinors in t he three~dimen-~
sional space . We know [4] that the transformation matrix S
of the spinors corresponding to characteristic Lorentz transformation has,
for the matrices vy, given by Formula (1.2}, the form

. _|zo
5 :’h@ -1

Therefore, two component palrs {¢*°] and {¢*¢*} transform under the char-
acteristic Lorentz group independently of each other. This fact allows us
to consider, on the characteristic Lorentz group, not only four-component
spinors, but also two-component spilnors.

Everything that was derived above for the four-component spinors is true
for the two-component spinors and corresponding formulas are obtained by
putting = y*= 0 .

These additional conditlons lead to considerable simplification of the
relationship between spinors and tensors, as in this case components of the
vector (' are identically equal to zero, while the tensor (% assumes a
special form (in the orthogonal coordinate system), namely

0 —p, Py Py

P, 0 _—pxpil

CPY . o 0 p |’ pxz_}.pyz_}_pzz:g (1.11)
y x z
—Py— P, —P,0
and satisfies an additional relation
Cpg = = Me8 ;€Y (1.12)

where €,.,; 15 2 unit, completely antisymmetric pseudo-tensor.

By {1.12) all the identities of (1.5) except (1.5.3) are satisfied.
Therefore, two-component spinor in the Minkowskl space is equlvalent to the
antisymmetric tensor (™ satisfying the identitles (1.5.3) and (1.12).

. in'this case conslsits of an 1isotropic vector J*. Equations (1.10)

b . —
ecome I'p,p =0, ,‘pcpq = (

Under three-dimensional spatial transformations, components P,, p, and
P, become the components of the pseudo-vector. Spilnors in three-dimensional
space can be considered as & particular case of two-component spinors in the
four-dimensional space, therefore it 1s clear that a spinor in three-dimen-
sional space is equivalent to an 1isotrople complex pseudo-vector. Existence
of two~component spinors in four-dimensional space 1s closely related to the
existence of an invariant submanifold {0, ¢**} . This means that, when
fundamental spin tensors vy, are chosen arbitrarily (and not only in the form
of (1.2)), then a spinor space contains a two-dimensional subspace, which is
invariant relative to the characteristic Lorentz group. )

In order to write spinor equations in tensor form, we can also use, apart
from (1.%) and {1.9), the following relation between the spinor and the guan-
tities ¢*® and *°? .

1pnk

P o= = (1.13)
Y
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With algebraic equations (1.10) taken into account, (1.13) allows .us to
obtain a closed system of tensor equations in terms of Cp, Cpq, R, /P, M¥ §ik
and N . Equivalence of such a system of tensor equations to the initial
system of spinor equations, follows from the previous argument.

Summing everything up, we can draw the following concluslons.

1. Four-component spinor in the Minkowskl space 1s equivalent to the
tensor field A = {C,, C**} which satisfles Equations (1.5).

Two-component spinor in the Minkowski space 1s equivalent to the antisym-
metric tensor (,, satlsfying Equations
» olractil — —_ cl
i ctrachil <o, Cpg = —Y28pqiiC

A spinor in a three~dimensional space is equivalent to an isotropic com-
plex pseudo-vector.

2. An equivalent form of any spinor equation can be written in terms
of components of tensors (, and (.

3. Spinor equations can generate a closed system of equations in terms
of components of tensors Q,jP, M, Siik  and Nkl

2. Maortomotbincoquum.l.nirac equations
in terms of components off and Cre
In the relativistic theory of electrons proposed by Dirac, equations which
are established for four wave functions of the electron ¢*, form a spinor
of first rank in the Minkowski space. They can be written as

mce

o i
Ynﬁl(a;pk + ;; A )+ P =0 (2.1)

where A, 1s some vector potential of external electromagnetic fields,
x*=1et , m and .e are the mass and charge of the electron, y* are Dirac
matrices, h 1s the Plank's constant and ¢°* 18 the velocity of 1light in
vacuo.

Summation from 1 to 4 is performed over the indices % and m . Insert-
ing the identity wﬂl—-¢nﬂl/:t 1f¢nﬂ into (2.1), we easily obtain

™ 1. P™ o™ o "
Tnm( o 2 ) oz’ ) + (iic Ak‘rnmlqJ + 117 )=0 (2.2)

in which the summation over v 1s omitted. On contraction with E ™"
over n , the above equation gives

+ 24 ) c* = (2.3)

( az"
Contraction of (2.2) with the matrices (EV;),,¥™ over n, or alternati-
vely, over v with dlagonal matrices J, ys, YaYs @nd vy,y; , yilelds
20707, 07 4 823 (1T + CTTHC™) + 4077 (4= 4,C™ — T €F) =0
(P, a=24p, 7= 14) (2.4)
o CP7, C™ 1 (CPIT*C, — C,7FCPY) 4 4CP ( 4,0 — = c") =0 (p=12) (2.5

Obviously, these equations are valid for all sets of indices p and ¢ ,
but they cease to be independent.

( T?ere are three independent equations with respect to k in (2.4) and
2.5).

Using the identities (1 5.1) and (1.5.2), we can reduce these equations to
c”q( c""+ ” 4,0 — 2 C">+ CPPIRC 4 4 CPU*CT =0 (2.6)

Znu

cp(v cnk + A c"" c’f) -+ CcPrC, = 2.7
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Equation (2.3) and any two equations from (2.7) with one equation from
2.6), or two equations from each (2.6) and (2.7) (in &k ), form a system of
equations equivalent to the Dirac system, and Dirac equations in spinor form
can be obtained from them by reversing the procedure used previously to obtain
tensor equations. Equlvalence of these equations can only be violated duri
the process of multiplying (2.1) by V—vv and during the contraction of (2.2?

It can however be verified, that in both cases this only leads to the loss
of the null soclution and both, Dirac equations and the set (2.3),(2.6) and
(2.7) have a null solution.

Contracting Equations (2.2) with various matrices vy!, y'y!,... over the
indices n and v , we can obtain a number of other equations which follow
from Dirac equations, but they will all be dependent on (2.6) and (2.7) and
will not contribute anything towards the construction of a complete system
of tensor equations.

Using the identity (1.13), we can write Dirac equations thus

a.'pv'm q ,‘pv'm F A :
k —_ ¥ te k ,vm me va)__ .
Tnm( Nz P \I’w P -+ (%Ak'(nm‘p + T‘p =0 (2.8)

This, on contraction over n and v with various matrices vy'. yields
equations in terms of components of tensors CP, CP4, Q, /P, ..., Nikl . These
equations are also equivalent to the Dirac system and, in particular, the
following equations hold

2me ) = = : Ze
Q (—,,—:" - ka"P) 4 i [Ya (€ 7PC =1 7PCH) — QUPQ — 37 Q24P =0
2
on (B2 P — G M*P — 5047 4 iTP (@O — i/ 2(CVR —
—iC UPMI — iCEG P, — 1,0 TPSH) = 0 (2.9)
2me 2ie . ,
Q( 7,01 — T35 014 G ACH) 4 112 [ V708 — M, 7ICH] = 0
2. Equations for t he neutrino in ten -
sor f orm . Relativistic equation for neutrino in the form given by
Paull, Lee and Yang, 1s )
of ——p=0
az"
where o* are two-row matrices satisfying the relation

apc‘J_'_Gq Epz 2ngJ

Pauli-Lee-Yang equations can be obtalned from Dirac equations (2.1) by
putting m =0, ¢® =4 = 0, 4; = 0. Taking into account (3) of Section 1, we
find from (2.6), that the tensor form of Pauli-lee-Yang equations have the

form .
Cpqvncnk + Cpnvkcnq =0 (2_10)

where (Pt is an antisymmetric tensor satisfying the ldentitles (1.5.3) and
(1.12) and which contains two independent equations with respect to X (2.10).

From (2.9) we also obtain equations in terms of components of j* and
CPt ; they are: . ;
1 4 ]Tvkcpk . ]kvpckr =0 (211)

3. Dirac equatilons in terms of comp o -
nents of tensors Q, /P, MPe, gPar and NPI?, System of
quasilinear equations (2.3),(2.6) and (2.7) 1is equivalent to Dirac equations
and makes the investigation of problems of motion of an electron in gravita-
tional filelds poasible. Tensors (, and (,, entering these equations are,
however, complex and have, appa.rentiy, no direct physical sense,.

We have shown previously, that a closed system of equations in terms of
tensors ,/P,..., Nk can be obtained from spinor equations. When com-
pared with complex equations, such a system offers the advantage, that the
tensors entering it have a known physical meaning and that the number of
unknowns 1s less by one (the phase o ).
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In order to obtain Dirac equations in terms of tensors ,..., NUk we
shall insert the identity

v'm

¥ .
Y™ = ———exp (i9,)
Ve

into them, obtalning
m 0 L M S M ie
k
Tnm 1p9 " 33:k [‘rnm( az --2" q}v'v oz +< he 7nm A + nm} \pv m {2 19)

which, in terms of o and "' is egulvalent to the Dirac system. Let us
denote the right-handVside of (2.12) by P™. Then

Tk P —— a:“ P (2.13)
from which we obvain the following iuuependent relationships for P'™
Re [$ y4nP"* = 0, Re [HY (pyy")inP™ = 0
Re [¥Y (v P = 0, Im [YM (y¥)in P 1 =0 (2.44)

It can be shown that no other equations of the type of (2.14), i.e. linear
combinations of pP'" exist, which are equal to zero. Relations (2.14.1) and
(2.14.2) can be transformed into

o __2me ;
I/fagg;’;v*siﬂ = NPT, Vy*=0 (2.15)
and (2.15.1) can be written as

2me i ;
VkS = 7~ N, Sk = 1/587"715‘52, N = 1/“5i1klNukl

Relations (2.14.3) and (2.14.4) yield the fact that the components ¢
and ¢%* of the tensor ®P%* are equal to zero

2me

QP — ,kv SPar - Nnmr]n + 1/05?%{ ( Sijkvll-ﬂ _ Sifkvn,-x + ftvnsijk)_
— !/26%1; (Mijvkg _ QV"M”) + anqrka“k — Mnkaanqr (2.16)

and we can see that, in general, ¢?%'= 0 for any p, ¢ and 7 .

To obtain the remaining differential equations we shall have to solve
{2.13) with respect to ag,/ 8zP

vy o9, LA v vy 9, : ey Vi
Q4 oz, = Re [* "’ (1*");,P*"], Qb el Im [$* ], P"]
v'v o9, . eV 1o Ba 4D i v'y 6(p = — v, v
Ny axp-‘:“‘lm[‘b M P NY' T 5 Re [$™7,2P™"] (247)

Transforming the right-hand sides of these equatlons, we obtain

o \p"'*(a . 2¢ )
VR o = e \od + T iy s Oy ) +

; W 3 . .. 8 .
-+ %7&3 (\bev i Pm 7 ‘pev) (2.18)

aq, ‘pv’v ] . e
"y Ak Ve X [P iarik 4 S pkper —
g L o (g oPBwim 4+ 5 N 4,)

i .
— 5 &P (1Y), (\P" ’

an 1b\r'ﬂ’l. ,‘pv m _____ we v)

o
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Conditions of compatibllity of these systems which we shall consider as
algebraic equations in dg,/ 32, glve
2me

_ 5 .y .
N (0 T ) g S USRS =0 (240

Approximate equatlon analogous to (2.19) was obtalned by De Broglie [9]
under the assumption of the absence of external flelds and of small veloclity
of the electron.

Last identity of (1.8) implies that {2.19) and Equation ®%' = 0 , are
interdependent.

To complete the tensor equations in terms of components of 0 we can use
the equatlons of simultanelty of the system (2.17) considered as differential
equations in dp,/ d2P, 1i.e. Equations

o 9 o d

Bxiﬁkav az" dat

Energy — 1impulse tensor 1s however found to be more sultable for our pur-
pose.

Q,=0

4, Energy - impulse tensor in the Dirac
theory We know [4] that the energy — impulse tensor 73 can, 1n the
Dirac theory, be written as

e n Jupm
T 4= " (yaya (ma‘l’_n‘i’ £ A4, 2.20
P 5 (TT)mn ‘l’ 2P ‘b B2 +‘ ¢ ol { )
and the tensor thus defined, satisfies [4] Equations
" s ) .k "
T = — ejy HFS, Tzk___Ticz:_,éc_vazAp (2.21)

it can easily be shown that the following ldentity exlsts:

B @Pay” — 0ayP) = Pray®e — ¢y’ (2:22)
which ylelds

. —m 0 . . s
WL = (0 (V7 5 47 — 0 W) A

The latter, on contraction with the matrices y* and y*y® and with (1.10)
taken into account, gilves

P> - - . ) , , )
T,,qzm"% (P*TpoxT — F4IV o) + iV () — T p M1 T — qukvpsmﬁeﬁl,,zq
Ty = 20 LT 08 e 0750 ) 47 — (1760 — 0767 - (P

+ chvpcm] + MINVpQ -+ o MgV NI — SK7 4 i, (1"’1"")} + edpiim (2.23)

Obviously Formula
i'“qu = f_;f, {,_;__ ('c'nkvpckq + chvpckn) + in Gy + ier}:qn,‘rvpik (2.24)

is valid for the energy — impulse tensor in case of the neutrino.
Utilizing Equation P, = O ,we obtain from (2.24%)
InTp" =0 (2.25)

Considering the identity (2.25) as a system of equations in j, we find,
that by virtue of existence of a nonnull solution of ., the identity

det Tp? = 0 (2.26)

should hold.
From (2.25) we can obtain a solution [f,= (F,, where ¢ is an arbitrary
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function, and P, 1s a third order minor of the matrix I,® obtalned from it
by striking out the nth row and any column. By the lsotropy of the vector
J. » the following ildentity should be fulfilled

prp, =0 {2.27)

The Lagranglan in tensor form can be obtalned from (2.23) since, as we
know, the Lagrangian L 1s given in terms of the energy — impulse tensor by
L= Tpp -+ mc*Q (2.28;

Let us now obtain the expression for the components of I in terms of
components of real tensors Q, jP, Mij, SUk and N¥k. Putting

1pv m .
P = ...]7...,._. exp (ip,)
,lpv v
inte {2.20), we obtain T,' in the following form

vt . m'v .
“15‘ Tt =§ (’r"l’q)m”[;gi‘_ (q@m o __ 0¥ ) + 2mn P ]-g- ,j_ ApiT (2.29)

vy oxP 3xP oxP

which, on multiplying by 11)""' and subsequent contraction with y* over v ,
becomes

1/ QT8 =V b [[;V p ME — MU 5y — YN U7 S5 -+

+ Yo Sy pN VK] B mefpi? + 5/ 210N M 2 (2.30)
Use of the last identity of (1.7) leads to the final form
2 . - . o
Tyt =T i+ e [ 167, MY+ 0T aMy) — o N S ] (2:31)

and calculation of the trace of the energy — impulse tensor, ylelds
- i3kl
T e (o 4 VP Vg
ot Q 24 Q

where we have used the identity (1.7.1).

We know, that in quantum mechanics the magnitude mQ denotes the actual
mass of an electron, hence TP represents the actual energy of an electron.
We notice that the form in which the tensor is given in (2.23) differs radi-
cally from that in (2.31). This is explained by the fact, that in the deri-
vation of (2.31} fulfilment of Dirac equations was assumed, therefore the
Lagrangian L formed according to Formula L = 7%, +me®0 becomes identi-
cally zero, while equating to zero of the Lagrangian obtained from the tensor
T, in the form given in {2.23), leads to another tensor equation.

This makes it clear that the three equations (2.20.1) in which the com-
ponents of 7,% are given in terms of components of , P, ..., Nikl according
to Formula (2.31) form, together with egquatlons of {2.19), a complete system
of differential equations, which can be closed by addition of nine lindepen-
dent algebraic equations (1.7). Another complete system can be formed from
Equations {2.15}, two equations of (2.192 and three equations of {2.21.1) or
equations of simultaneity of the system {(2.17), are second order differential
equations.

== — melQ

The fact that three second order equations are necessary arlses not from
the peculiarity of our method, but from the invarlance of the gradients of
Dirac equatlons.

Indeed, & system of differential equations in tensor form should also be
invariant under the gradient operatlion, and the fact that tensors entering
these equations are invariant under gradient transformations lmplies, that
tensor equations should contain not the potentials of externsl fields 4, ,
but the flelds themselves v A,— V,Ap.

Since potentials 4, enter Dirac equations without their derivatlves,
hence tensor equations containing the fields should be of second order, when
the terms 23¢"/3x* are present in them. As there are three independent
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components of A4,, we can have three such equations.

Using the methods given above, we can easlly write also nonlinear equa-
tions which would be a generalization of Dirac theory in tensor form. Such
equations in most cases have the form [10)]

Yeop + Jp =0

and they can be obtained in tensor notation by substituting . for mc/%
in the Dirac equations in tensor form.

Appendix
A.1. Extension of spinor representatilion
over t he complete affine group . Let us con-
silder a k-parameteric group (G of transformations of coordinates of the

n-dimensional Euclidean space R,

We shall choose the parameters q!, o®,..., a* defining the elements of
the group in such a manner, that theilr null values define the unit element
of (¢ , and we shall consider the matrix representation of the group ¢ 1in
the p-dimensional space L,.

We know that representation of such groups can be described in terms of
its infinitesimal operators I, which are defined as partial derivatives of
the matrix of representation with respect to parameters of (¢ , taken at null
values of these parameters. Infinitesimal operators which appear as p-dimen-
sional matrices, are given by

O N e (A.1.1)

Summation is performed from 1 to k% , over { . Coefficients ¢!,, are
defined by the structure of ¢ , according to well-known formulas [11].

Let us replace the parameters gq!, a%®,..., a* with @', 62,..., 8" defin-
ing some subgroup A of @ in such a manner that ao'= a!(8', 6%,..., 67)
and a!'(0, O,..., O) =0 .

Some subgroup in 7 will correspond to ACG . It can easily be shown
that the infinitesimal operators I, of the representation of A can be
defined in terms of I, as follows

dak 5
I =1, [%%" (A.1.2)
m k (66’" )ox=e=_—_...:97,—o
Let the following representation of the matrix group be given
‘1—# al a? H
ad 1+ atl

where qal, a®, a® and o' are arbitrary parameters. Computation of the coef-
ficients ¢!, results in this case in the following set of relationships
for infinitesimal operators

LI, — I, = I, Ll — Idy = I, — I, Ly, — LI} = —1I; (A.13)
L1, — I, = I, LI, —I1,J1,=0, LI, — 1, = — I
We shall attempt to define the representation T of the group ¢ , which

would coincide, on the orthogonal subgroup 0 C G , with the spinor repre-
sentation of the subgroup O with its infiniteslmal operator X known.

To effect the transition from ¢ to O , we must put
al=cos® —1, g?==~—sinf, a®=snb, a*=-cos® —1

Then, from {(A.1.2) 1t follows that:
K =1,— 1 (A.1.4)

Since the spinor representation of welght # 1is given by the matrices
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”exp(vgie) 0 H
i 0 exp (—1/210)
the operator ¥ has the form
1t 0
K=|"o —api]

and the system (A.1.3) with the condition (A.1.4%) can, after eliminatling the
dependent equations, be written as

LI, — I, = — 13, LK —KI;= M —21, LK —KI, = 214K (A1)
where A 1s arbitrary.

It is easy to show that the system (A.1.5) 1is not conslstent at all pos-
sible values of X . Consequently, we {ind that represcntation of a complcte
group of coordinate transformations coinciding wilth a sSplnor represcentatlon
on the orthogonal subgroup, does not exlst. This was proved for the spinor
representation of a group of rotations of a plane, but 1t ie obviously valld
for spinor representations in space of any dimenslon. Hcnce it follows that
the spinor considered as a linear geometrical cntlty, can be Introduced only
into orthogonal coordinate systems. Uslng this method we can also show that
even an increase in the number of components of thc splnor docs not result
in the possibility of 1its introduction into nonorthogonal coordinate systems.

A2, Tensors Ci, Cppy P, M7 ana S¥ 1n canontiec
f orm . Let us consider tensor aggregates {jP, MiJ7 Silk} and {Cj, Cpq},

We can always select such an orthogonal coordinate system, in whilch the
components of J® have the form

P =1(0,0,0, ip) (A.2.1)

where we have, by virtue of (1.7.1), ¢2= 0°— ¥ . From (1.7.3) it follows
that in this coordinate system the components S* of the vector §° becomes
equal to zero.

Further, we shall perform an orthogonal transformation of the spatial
coordinates x', x* and x* so, as to make the components of S! and S§7
equal to zero. Then, the components (A.2.1) will remain the same, whlle the
components of the vector S® will, by (1.7.2), be written as

SP = (0, 0, ip, 0) (A.2.2)

From (1.7) and (1.10) it follows, that in the coordinate system just
obtained, components of the tensor M!J will be glven by

o —Q 0 0

" Q 0 00
M — 0 0 0 N (A.2.3)

0 0—N O

From the identity (1.9) we find, that in this coordinate system components
of the spinor " are gilven as

Y=19p3=0, P2 =4 'l/l/z_p'eicpy = Y (R+ Ny o

+ Vike

and remembering that mod

= 1 , we can put
Q+N
P

On rotation of the plane x'xX* by an angle 6 , matrix of transformation
of splnors becomes

QO+ N
p

Q200 _ glai® (A.2.4)

exp (— /2 i0) 0 0 0
S — 0 exp (}/: i0) 0 0
0 0 exp (— /20) 0

0 0 0 exp (1/2 i0)
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Let us now rotate the x'x® plane by an angle (-~ 9) . Then, by (1.3),
which deflne the components of ¢, and ¢,, 1n terms of components of ﬁ
1t followg, that 1n the obtalned coordinate system, components of (, and

Ty, are glven in the form
’ 0 0 — Q1
. 0 o0 N 9 l
C;=(—ip, p, 0, 0), Coa=| N —iN 0 0
i —a2 0 o |

while the components (A.2.1) te (A.2.3) remaln unchanged.

The author cxpresses his pratitude to L.I. Sedov for valuable remarks and
asceossment of thic paper.
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