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1. Roprerotgtlbn ot iplnom in twnu at tmror rJ8tww. In cwntum 
mechanics., some of the elementary particles can be described In terms of 
several wave functions, which represent a spinor In a three- or four-dlmen- 
sional space. Splnors can also be used as generalized parameters in construc- 
ting the models of continuous media. 

When we regard a spinor as a linear geometrical entity, then we'can define 
it only on the orthogonal group of transformations of coordinates. Neverthe- 
less, spinor equations can be written in an equivalent form which lends 
itself to investigation in arbitrary curvilinear coordinate systems. 

1. Basic definitions . We shall first consider aplnors 
in the four-dimensional Minkowskl space R 1 , referred to the original coor- 
cllnate system xx. Coordinate z4 shall be assumed to be complex. Let yl, 
y2, y3 and y4 be Dlrac matrices which, by definition, satisfy 

TiTj+ TjTix26ijJ fl.1) 

where 6,, is Kronecker delta and J is a unit matrix. 

If the system y, (t - 1, 2, 3! 4) Is a solution of (l.l), then we can 
easily see that the system TyiT will also be a solution of (1.2) for any 
nondegenerate matrix T . 
the relation ylO= Ty,T' 

Any two solutions y, and y; are connected by 
where the matrix T Is suitably defined [lJ. 

We shall use the following set of Hermitian matrices y, (1.2) 

0 0 o--i 0001 0 O-i 0 OOlOl 

0 O---i 0 0 o---1 0 oooi OOO$ 
T,-= (j i 0 () ’ Te== o_* 0 0 * ys =z 

i 0 00’ ?.a= 1 0 0 0 
Ii 00 0 10 00 O-4 0 0 0 1 0 0 

Let 1; - IIloplI be a Lorentz. transformation of space Al, and let a unimod- 
ular fourth-order matrix S deflned by 

correspond to each Lorentz transformation L . 
Set OS matrices S corresponding to the group of Lorentz tranaformatlons 

L '. will also be a zroun. and will aenerate a linear renreaentatlon of the 
group L which shall b& called a iplnor representation. 
call Y -'Et13 whose components 

Finally, we shall 
) i are defined with accuracy of up to the 

change of s&gn and which transforms according to S , a splnor of first rank 
in the space R1 . 

It can be shown that the group of splnor transformations S cannot be 
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considered as a subgroup of some group effecting the representation of a 
complete afflne group of coordinate transfor~t~ons (see Appendix). Obviously, 
if the system of matrices 
ces y,* 

y1 is a solution of (f.l), then transposed matri- 
also satisfy (l.l), consequently there exist a matrix C such, that 

yi* = CyiC-', rletC= 1 

Covarlant components of the splnor $I, are given by 

qi; == e,Gi*i fE = /le.+ II = Q.5, YS = w2w17(4) 

2. Representation of splnors in terms 
of complex tensors We know [z] that the spinor Y in 
the space I), is equivalent to the teAsor field h composed of a complex 
vector C, and a complex antlsymmetrlc tensor of second rank C,, which 
satisfy six Independent algebraic equations. c, and G, are given by 

'i= (ET$),,$qQn, c,, -= '/34T& -T4Qmn Q"9" (1.3) 

For the matrices (1.2) we have 
IO---1 0 03 

0 0 0 

B = T4T2 ---i ; (, (1 1 

0 O-l 0 

Components of f* and the tensor field A are connected by Formula 

(1.4) 

Here +*k= f.$k denote the components of a spinor which is algebraically 
equivalent to A . Components +nk can be obtained in terms of the compo- 
nents of C, and C,, by means of Formulas (1.3). 

Components of the tensors (7% and C,, 
equations [ 33: 

satisfy the following invariant 

cz’c, -= 0, CikCik = 0, c lib c Prll=O, &&_o, c"c"+ CiPC,L 0, C[Gy"l _z 0 

(1.5) 
Here square brackets around the superscripts denote the alternation over 

these indices. Fifth equation of (1.5) defines, with accuracy of up to the 
change of sign, components of the vector C, in terms of the components of 

ions out of Out of all equations of (1.5),(1.5.2),(1.5.3) and four equat 
(1.5.5) are Independent. 

By (1.4)s every splnor equation has an equivalent expression 
the components of Cl and C,, . 

in terms of 

3. Representation of spinors in terms 
of real tensors Components of the spinor #* may form not 
only a complex field A I (C,, &,,), but also a real tensor field 
D = {Q, jk, Mik Silk, &jkl), 

Components of the tensors 
satisfy+ng r$ne indep.vndent algebraic equations. 
8, jk, Nlk, Sllk and NtJkl csn be defined [43 thus (*) 

l ) It can be shown that an orthogonal coordinate system exists, in which the 
COmpOnentS Of tenSOrS Ci,Cp@,jQ, &@P and Sk ='/6EkijiS?t have the fOrSI (See 
Appendix) 

p I; (0, 0, 0, ip) 
0-Q 00 0 0 N--i52 

Sk =: (0, 0, ip, 0), Mb .= 
Q 0 0 0 i:li Q 

0 C-J -1v - i ?: 0 

CK = (- ip, 0, 0, 0) 
0 j 

0 i) iM - 12 rj ilij 
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Components of the tensors Q,iP, Mii, Siik and Nijkl satisfy a number of 
invariant equations, the following of which are known [5, 6 and 71: 

JkJk = ---a? + I/~~‘~ijk~Nijk~, lJGSijkSi% - !i?.2 + ~/aNijkiNijk’ 

6ijEt S . . 
pqrn ijkil = or ~~~~‘?i~ij = W -+ l~~~Nii~~~ijkl 

8fj$$?‘MiiMk’ s gQN”Qrn, Mkpjk = lleNijkpSijk 

Sk’y, = QMim + 1/2N1mkrMk,, (1.7) 

It is also easy to obtain the following equations: 

(W 

Tensor &$L is defined as follows: 

"fTi= 6.P6.Q t 4 P 
1 f k 

F-6 Per6 Q i j k $ &~9~jf~kP~6~u&jT~pP-t_6~r6jP8~~~~g, 6j 6, 

and the tensor can be found In the analo 
assume C83 that'#!~tions (1.7.1),(1.73),(1.7.5(5 

ous manner. We can also 
and (1.7.6) are Independent. 

We know [2] that the tensor field C defines the components of the spinor 
$k with accuracy of up to the factor whose modulus is unity. The connection 
between the components of the splnor and n is given by 

Here +n*k- snlbk is algebraically equivalent to R . 
Components of )n** can be found in terms of 8, iP, Mij, Siik and Nijkl from 

(1.6) and g, Is an arbitrary real number. 

Since the relationship (1.9) between the components of the spfnor and 0 
exists, arbitrary spinor equations can be written in an equivalent form In 
terms of components of n and of the phase cp . Eliminating the phase cp 
from these equations we can obtain tensor equations in terms of the compo- 
nents of 0 To complete the resulting set of tensor equations, nine inde- 
pendent algebraic equations (1.7) must of course be added. 

Closed system of equations which we have obtained, will not be equivalent 
to the initial splnor equations. Nevertheless, this shortcoming is not 
important when It comes to consider physical aspects of the phenomena des- 
cribed by splnor equations, since only the tensors (1.6) have a direct physi- 
cal meaning and all physical magutudes (taking Into account cp and the 
tensors Q,jk, Mii, Silk and Nijkl from the initial equations) can be expres- 
sed in terms of these tensors. 

Tensors (1.3) and (1.6) are also algebraically interrelated and, In par- 
tlcular, the following relations exist: 

4QZ=G$- ~/~CP~~P~, 4QjQ= i(CpfFP- c,CQP) 

4QMPq = iS~j(ciCj-C+~~'j,), g&,$jk = &z (CPcw + CP~Q’) 

IGQNiik’ ;= fji j/f cpq~m 
]Jqr II . iv.. 

xlkl 
Nijki _ - - G (C’Ci i_ ‘/zcijcij) (1.10) 

4jpjQ = Cp@ + cI+ _ C;;“kc,” _ cPkCkQ _ (Eici _+ 3/,cGcij) gPQ 
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%. Twcj- component spinors in the Minkow- 
ski space . Splnors in the three -dinen- 
slonal space . We tiow [4] that the transformation matrix S 
of the splnors corresponding to characteristic Lorentz transformation has, 
for the matrices y, given by Formula (1.2), the form 

izo 
s =jj* p-1 

I/ 

Therefore, two component pairs ($'$a] and ($"JI") transform under the char- 
acteristic Lorentz group Independently of each other. This fact allows us 
to consider, on the characteristic Lorentz group, not only four-component 
splnors, but also two-component spinors. 

Everything that was derived above for the four-component spinors Is true 
for the two-component splnors and corresponding formulas are obtained by 
putting lr3- *4= 0 . 

These additional conditions lead to considerable slmpllflCatlon of the 
relationship between splnors and tensors, as In this case components of the 
vector Cl are Identically equal to zero, while the tensor CVa assumes a 
special form (In the orthogonal coordinate system), namely 

0 -Pz P, Pr 

-P,-Ppl/--Pp,O 
and satisfies an additional relation 

c,, = - 1/2speijCii (1.12) 

where spplJ Is a unit, completely antlsymnetric pseudo-tensor. 

By (1.12) all the identities of (1.5) except (1.5.3) are satisfied. 
Therefore, two-component splnor in the Minkowski space Is equivalent to the 
antlsymmetrlc tensor Cm satisfying the Identities (1.5.3) and (1.12). 
n ln'thls case conslsits of an isotropic vector Jk. Equations (1.10) 
become 

ipip = 0, ipc,, = 0 

Under three-dimensional spatial transformations, components P., p, and 
pI become the components of the pseudo-vector. Splnors In three-dimensional 
space can be considered as a particular case of two-component spinors In the 
four-dimensional space, therefore it Is clear that 8 splnor In three-dlmen- 
slonal space Is equivalent to an isotropic complex pseudo-vector. Existence 
of two-component splnors In four-dimensional space Is closely related to the 
existence of an Invariant submanlfold (0, CD*) . This means that, when 
fundamental spin tensors yt are chosen arbitrarily (and not only In the form 
of (1.2)), then a spinor space contains a two-dimensional subspace, which ls 
invariant relative to the characteristic Lorentz group. 

In order to write spfnor equations In tensor form, we can also use, aPart 
from (1.4) and (1.9), the following relation between the splnor and the quan- 
titles #pa and ***a 

(1.13) 
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With algebraic equations, (1.10) taken Into account, (1.13) allows.uq.to 
obtain a closed system of tensor equations In terms ofCp, cpq, a,ip, JJ'j, Sijk 
and N . Equivalence of such a system of tensor equations to the Initial 
system of splnor equations, follows from the previous argument. 

Summing everything up, we can draw the following conclusions. 

1. Four-component splnor In the Mlnkowskl space Is equivalent to the 
tensor field h = [Cl, CPQ) which satisfies Equations (1.5). 

Two-component splnor In the Mlnkowskl space Is equivalent to the antlsym- 
metric tensor C,, satisfying Equations 

c,, = - ~/*spqiiCi~ 
A splnor In a three-dimensional space Is equivalent to an Isotropic com- 

plex pseudo-vector. 

An equivalent form of any splnor equation can be written In terms 
of cozionents of tensors C, and C,, . 

3. Splnor equations can generate,a closed,system of equations In terms 
of components of tensors Q,ip, j@i, S'Jk and N'Jkl. 

2. Teluor?orm8oi~o~q\utlonm. 1. Dlrac equations 
In terms of comvonents off c. and C.. . 
In the relativistic theory of Electrons proposed by Dirac, e@.iatlon‘s which 
are established for four wave functions of the electron fk, form a splnor 
of first rank In the Mlnkowskl space. They can be written as 

(2.1) 

where Ak Is some vector potential of external electromagnetic fields, 
x4= tct 
matrices: 

In and .e are the mass and charge of the electron, Yk are Dlrac 
h Is the Plank's constant and c* Is the velocity of light In 

vacua. 

Summation from 1 to 4 Is p$rformed over the Indices k and m . Insert- 
ing the Identity ~pm=qnm/* 1/E,into (2.1), we easily obtain 

In which the summation over v Is omitted. On contraction with h',,,,,?j~~~ 
over n , the above equation gives 

(2.3) 

Contraction of (2.2) with the matrices (~~&,,n~m' over n , o;l~.;~natl- 
vely, over v with diagonal matrices J, Y6, YsYI and YiYa s 

(P. 4 = 2,4, P, q = ~4) (2.4) 

2 OZ)V,Cnk+(CPiVkCi- CivJV~i)+4cp(&4nCnl'- y Ck)=O (p=1,2) (2.5) 

Obviously, these equations are valid for all sets of Indices p and q , 
but they cease to be Independent. 

There are three Independent equations with respect $0 k In (2.4) and 
(2.5). 

Using the Identities (1.5.1) and (l.5.2), we can reduce these equations to 

~,,Cnk+$ AnCnk - 
2mc 
7 Ck) + cpm@3,q + CPVkCQ = 0 (2.6) 

CP ( vnCnk + ‘2 A,+ - ‘F Ck) -i_ CP”y7kC = 0 n (2.7) 
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Equation (2.3) and any two equations from (2.7) with one equation from 
(2.61, or two equations from each (2.6) and (2.7) (In k 1. form a system of 
dquations equivalent to the Dlrac system, and DIGa& equations In spinor form 
can be obtained from them by reversing the procedure used previously to obtain 
tensor equations. Equivalence of these equations can only be violated durl 
the process of multiplying (2.1) by 1/F and during the contraction of(2.2 . “p 

It can however be verified, that In both cases this only leads to the loss 
of the null solution and both, Dlrac equations and the set (2.3),(2.6) and 
(2.7) have a null solution. 

Contracting Equations (2.2) with various matrices yi, y*yl,... over the 
Indices n and v , we can obtain a number of other equations which follow 
from Dlrac equations, but they will all be dependent on (2.6) and (2.7) and 
will not contribute anything towards the construction of a complete system 
of tensor equations. 

Using the Identity (1.13), we can write Dlrac equations thus 

(2.8) 

This, on contraction over n and v with various matrices y*. yields 
equations in terms of components of tensors 0, CPQ, 8, ip, . . .,Nijkl . These 
equations are also equivalent to the Dlrac system and, in particular, the 
following equations hold 

- VkMkP) + i [‘/d (c*@v* - ‘/aqjvwij) - i2p3-2 - $ WAP = 0 

cn (2q iP _ vkMkP - + i VP (QC”) - i / 2 (PV”Q - 

_ iCkVPMkn _ iC*kvPik - l/2CijVpSiin) = 0 

Q ( vkCkQ - ‘y CQ + 2 AkCkPj + i/ 2 [-ikVqCk - 

(2.9) 

~/2MkpvqCkp] = 0 

2. Equations for the neutr 
sor form 
Paull, Lee and Ya&, 

Relativistic equation for neutrlno 
1s 

aka __o 
ask $- 

where ok are two-row matrices satisfying the relation 

In0 In ten- 
In the form given by 

apa + a q :p=2gP"J 

Paull-Lee-Yang equations can be obtained from Dlrac equations (2.1) by 
putting m = 0, 98 = $4 = 0, Ak = 0. Taking Into account(3) of Section 1, we 
find from (2.6), that the tensor form of Paull-Lee-Yang equations have the 
form CpQv ,""+ @"'v'fc n q=o (2.10) 

where pa Is an antisymmetric tinsor satisfying the Identities (1.5.3) and 
(1.12) and which contains two independent equations with respect to k (2.10). 

Prom (2.9) we also obtain equations In terms of CompOnentS Of Jk and 

C9’ ; they are: 
?-vkc Pk _ ikvPCk” z 0 (2.11) 

3. Dlrac equations terms of compo- 
nents 
quaslllnear lqktlkni i283j) ?2’6) 

a n d NPqm. System of 
and (2.7) 'is equivalent to Mrac equations 

and makes the lnvestlgatlon'of'problems of motion of an electron in gravlta- 
tlonal fields possible. Tensors C 

i 
and C entering these equations are, 

however, complex and have, apparent y, no d%ect physical sense. 

We have shown previously, that a closed system of equations in terms of 
tensors a,[=', . . ., Niikl can be obtained from splnor equations. When oom- 
pared with oomplex equations, auoh a system offers the advantage, that the 
tensors entering It have a known physical meaning and that the number of 
unknowns Is less by one (the phase rp ). 



In order to obtain Dirac equations In terms of 
shall insert the Identity 
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tensors 52, . . ., N’jk’, we 

Into them, obtaining 

7 

agv'rn 1 +An a*~'v 
----_ 
azk 2 @v azk $ mnk A, +‘~S,, ;‘+8=’ (2.12) 

which, In terms of 9, and $"" is equivalent to the Dlrac system. Let US 
denote the right-handvslde of (2.12) by pvn. Then 

(2.13) 

from which we ootaln the following iihtiependent relationships for PYn: 

It can be shown that no other equations of the type of (2.14) i.e. linear 
combinations of pvn exist, which are equal to zero. Relations [2.14.1) and 
(2.14.2) can be transformed Into 

and (2.15.1) 

Relations 
and @=' of 

2mc 
vkSk =3: T N, Sk I ‘/sekiilstil, N = I/&‘jk’NUI,, 

(2.14.3) and (2.14.4) yield the fact that the components &'I' 
the tensor #per are equal to zero 

Re [$” yla,,Py”] = 0, Re I$* (r’y~%7kP”I = 0 

Re t$” (yvl)ln Pynl = Oj h W* (yV)h P” I = 0 (2.:4) 

- $$&gf; (M’jvkCl - QVkM”j + NnP~VkM,,” - M,,kVkNnpq' (2.10) 

and we can see that, In general, (P*Qr= 0 for any p, 4 and r . 

To obtain the remaining differential equations we shall have to solve 
(2.13) With respect to &p,JaxP 

Q$v*v 2 . 
- Re 19” ” tr4rP)l,~““l, Shf’ 2 - i Im [~e*vJ,,Pm] 

Nq,V’V $$ I - i Im [$e’fr6r4rP)t, PI. 
f-9” 

Nf” az, - - Re jgeVyr~PY”J (2.17) 

Transforming the right-hand sides of these equations, we obtain 

8% qV‘* 
1L""S dl" = 2 

( 

2mc 
+M,' + tc i, -$PA, + 

.) 

+ g,s i 

. 
@“-$g 

a *v,“:_ qhn_..!& *e-v 
) 

(2.18) 

,#“‘*Nkp41 s - _ !.!$. (.$ ~pg$$j$fjk + $ NkPPr At) - 
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Conditions of compatibility of these systems which we shall consider as 
algebraic equations in &,/13xr, give 

Nkppr VIMk' + F jkj + + ( gq~~vJiiwjk t_ l/6~~~~$kv,sijl=L 0 (2.19) 

Approximate equation analogous to (2.19) was obtained by De Broglie C9] 
under the assumption of the absence of external fields and of small velocity 
of the electron. 

Last Identity of (1.8) implies that (2.19) and Equation @per= 0 , are 
interdependent. 

To complete the tensor equations in terms of components of R we can use 
the equations of simultaneity of the system (2.17) considered as differential 
equations In acp,t axp, I.e. Equations 

a;% ,d,,%- -- I&$%=U 

Energy - impulse tensor is however found to be more suitable for our pur- 
pose. 

4. Energy - Impulse tensor in the Dirac 
theory We know [4] that the energy - impulse tensor Te9 can, in the 
Dlrac theory, be written as 

TPq 
and the tensor thus defined, satisfies [4] Equations 

ViT~i=-ej@ii 3 Tilr_._ T"'=-?+VpSii-P 

(2.20) 

(2.21) 

It Can easily be shown that the following identity exists: 

#@(j&~~__. $P~+P) z *sd~ap._._ *+J+P~~BB 

which yields 
(2.22) 

The latter, on contraction with the matrices y4 and v4vn and with (1.10) 
taken Into account, gives 

T+=.$ 

I 

4 (&&,ckq - “k’vpck) + iv, (@q) - jkvpMbq - $ ~g~~kv~s~ik 
I 

feA# 

/mTp’J = $ f {- [ &vpci + $ &VP&) gqn - (>vpcq - >v,c”) + (?kvpcg + 

-k Cqkvpckn) 1 -b MqnVpQ f f Mk,‘t’pNIC1qn - SkqnVpjk + iv, (jqln)} + eApjqjn (2.23) 

Obviously Formula 

l”TpP = - “4” {+ fenkvpckq + cqkvpct;n) + iv, (iq/%) + ierk@jrvpjk (2.24) 

Is valid for the energy - Impulse tensor in case of the neutrino. 

Utlllzlng Equation jpj, - 0 ,we obtain from (2.24) 

inTz;” = 0 (2.25) 

Considering the identity (2.25) as a system of equations in Jn we find, 
that by virtue of existence of a nonnull solution of j,, the identity 

should hold. 

det Tpq = 0 (2.26) 

From (2.25) we can obtain a solution J,,- CP,, where c is an arbitrary 
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function, and P, is a third order minor of the 
by striking out the nth row and any column. By 
3, f the following identity should be fulfilled 

PnP, = 0 

1297 

matrix Te* obtained from It 
the isotropy of the vector 

(2.27) 

The Lagranglan in tensor form can be obtained from (2.23) since, as we 
know, the Lagranglan L is given in terms of the energy - Impulse tensor by 

L = Pp _t ?nc%z (2.283 

Let us now obtain the expression for the com~o~e.~ts of 72 in terms of 
components of real tensors Q, ip, MsJ, S*M and iV*J@. Putting 

Iii"-- jZ.Z&. e=p (in) _- 

into (2.20), we obtain T,' In the following form 

which, on multiplying by @' and subsequent contraction with y4 over v , 
becomes 

f / cQTpQ = 5 E IilVpMql - MqlV,il - ~/~N~~~kvpS~j~ + 

+ Xl8 SfjkVpNQijkj + rnc~~‘~ + fi / 2 PV +f,’ 

Use of the last identity of (1.7) leads to the final form 

(2.30) 

+ iqUlM ' - $ pGkvpSijk P 9 (2.31) 

and calculation of the trace of the energy - Impulse tensor, yields 

where we have used the Identity (1.7.1). 

We know, that In quantum mechanics the magnitude mCl denotes the actual 
mass of an electron, hence Tp, represents the actual energy of an electron. 
We notice that the form In which the tensor is given In (2.23) differs radl- 
tally from that in (2.31). This is explained by the fact, that in the derl- 
vatlon of (2.31) fulfilment of Dirac equations was assumed, therefore the 
Lagrangian L formed according to Formula L = Tp,+mcaS3 becomes ldentl- 
tally zero, while equatin 

7 
to zero of the Lagrangian obtained from the tensor 

T," In the form given in 2.23), leads to another tensor equation. 

This makes it clear that the three equations (2.20.1) In which the com- 
ponents of TpQ are given in terms of components of Q,jp,...,Nt3k1 according 
to Formula (2.31) form, together with equations of (2.19), a complete system 
of differential equations, which can be closed by addition of nine lndepen- 
dent algebraic equations (1.7). Another 
Equations (2.151)~ two equations of 

complete system can be formed from 
(2.19 and three equations of (2.21.1) Or 

equations of simultaneity of the system t 2.17), are second order differential 
equations. 

The fact that three second order equations are necessary arises not from 
the peculiarity of our method, but from the Invariance of the gradients of 
Dlrac equations. 

Indeed, a system of differential equations in tensor form should also be 
invariant under the gradien: operation, an# the fact that tensors entering 
these equations are invariant under gradient transformations implies, that 
tensor equations should contain not the potentials of external fields A* , 
but the fields themselves v,Ak-vkA,. 

Since potentials A, enter Dlrac equations without their derlvatlves, 
hence tensor e uatlons containing the fields should be of second order, when 
the terms b$' 3 axL are present In them. As there are three independent 
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components of A,., we can have three such equations. 

Using the methods given above, we can easily write also nonlinear equa- 
tions which would be a generalization of Dirac theorv In tensor form. Such 
equations in most cases-have the form [lo] 

and they can 
in the Dlrac 

be obtained in tensor notation by substituting J for me/h 
equations in tensor form. 

A.l. Extension of spinor representation 
over the complete afflne group Let us con- 
sider a k-parameterlc gnoup C of transformations of coordinates of the 
n-dimensional Euclidean space I), . 

We shall choose the parameters cl, o",..., at defining the elements of 
the group In such a manner, that their null values define the unit element 
of c * and we shall consider the matrix representation of the group G in 
the p-dimensional space L,. 

We how that representation of such groups can be described In terms of 
its lnflnlteslmal operators I, which are defined as partial derivatives of 
the matrix of representation with respect to parameters of C , taken at null 
values of these parameters. Infinitesimal operators which appear as p-dimen- 
sional matrices, are given by 

Ijl, - I,Ij = CjmIi (‘1.1.1) 

Summation Is performed from 1 to k , over t . Coefficients cl,. are 
defined by the structure of C , according to well-known formulas [ll]. 

Let us replace the parameters a', aa,..., a' with sl, 
lng some subgroup A ( 

ea,.ii, 8' defln- 
of f3 In such a manner that a'- ai sl, 

and ~'(0, O,..., 0) = 0 . 
,..., er) 

Some subgroup In T will correspond to ncc . It can easily be shown 
that the lnflnlteslmal operators I: of the representation of A can be 
defined In terms of I. as follows 

act’; 
I,‘=Ik api ly=y= ( ) ._Q’_O . . _ 

(AI.‘) 

Let the following representation of the matrix group be given 

11 

1 + u’ az 
u3 II 1+ a? 

where al, aa, a3 and a4 are arbitrary parameters. Computation of the coef- 
ficients cl,. results In this case In the following set of relationships 
for lnflnlteslmal operators 

ZJ2 - I,I, = I,, I,I, - I,I, = I, - I,, Z,I, - IJ, = - I,, (A.1.3) 

I,I, - IJ, = I,, z,z, - I,I, = 0, I-J, - IJ, = - I, 

We shall attempt to define the representation T of the group C , which 
would coincide, on the orthogonal subgroup OCG with the splnor repre- 
sentation of the subgroup 0 with Its inflnltesimai operator K tiown. 

To effect the transition from C to 0 , we must put 

,1 = cos 8 - 1, as== -sine, a3 = sin 8, a4=cos0-1 

Then, from (A.1.2) it follows that: 

K = I2 - I, (A.l.4) 

Since the splnor representation of weight & Is given by the matrices 



// exp (‘/a if)) 0 
II 0 

/I 
cxp (- I,/? i0) (I 

the operator K has the form 

and the system (A.1.3) with the condition (A.1.4) can, after ellmlnatlnl: ttle 
dependent equations, be written as 

Ill, - I$,.= - I,, I,K -K I, = hJ - 21,, I,K - K I1 = 21, i-K (A. 1.5) 

where h 1s arbitrary. 

It Is easy to show that the system (A.1.5) Is not conslstcnt at all pas- 
slble values of 1 . Consequently, we find that rcprosc,ntatlon of a complctc 
group of coordinate transformations coinciding with a spinor reprc~sentatlon 
on the orthogonal subgroup, does not exist. This was proved for the splnor 
representation of a group of rotations of a plane, but It It: obviously valid 
for splnor representations In space af any dlmcnslon. Hence It follows that 
the splnor considered as a linear geometrical cntlty, can bc introduced only 
Into orthogonal coordinate systems. Using this method we can also show that 
even an Increase In the number of components of the slllnor doC>s not result 
In the possibility of Its Introduction into nonorfhoconal coordinate systcmn. 

A.2. Tensors Ci, C,,, jp, Mii a n d Sijk.. & n c a n o n 1 c 
form . Let us consider tensor aggregates {iP,MzJ, ,.Yllk) and {Ci, C,,}. 

We can always select such an orthogonal coordinate system, in which the 
components of ,jp have the form 

ip = (0, 0, 0, ip) (.4.“.1) 

where we have, by virtue of (1.7.1), $= n2- p. From (1.7.3) It follows 
that In this coordinate system the components p of the vector Sp becomes 
equal to zero: 

Further, we shall perform an orthogonal transformation of the spatial 
coordinates x1, z? and .? so, as to make the components of S' and S' 
equal to zero. Then, the components (A.2.1) will. remain the same, while the 
components of the vector Sp will, by (1.7.2), be written as 

P = (0, 0, ip, 0) (A.2.2) 

From (1.7) and (1.10) It follows, that In the coordinate system just 
obtained; components 

From the Identity 

of.the tensor -ff'J will be given by 

II0 --P 0 0 

Mii= o 

I 

B 0 00 

0 ON 
(A.2.3) 

0 O-N 0 

(1.9) we find, that In this coordinate system components 
of the splnor $' are given as 

and remembering that mod ti = 1 
P 

, we can put 

Q +-V e'?iq =e1;z i0 

P 

On rotation of the plane x'.z? by an angle R , matrix of transformation 
of splnors becomes 

exp(-1/2 i0) 0 0 0 

s= 0 exp (1/2 8) 0 0 

0 0 exp(--'/a i0) 0 

0 0 0 exp(% ie) 
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Let ur now rotate the x1_? plane by an angle (- n) . Then, by (1.3) 
which define tfle components of C, and C, p in terms of components of )' 
It follows,, that in the obtained coordinate system, components of C, and 
r ,p i are r<lvcn in the form 

11 0 0 N - is1 
I iN Q 

C,=(- ip, p, 0. O), CP, =/ -R _“j,y 0 0 

II is1 -52 u 0 

whllt, the componcntr, (A.2.1) tc? (A.2.3) I'( maln unchanged. 

The author c:xprco3cc his gratitude to L.I. Sedov for valuable remarks and 
a::::o::zmont of thlc paper. 
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